
Computer Physics Communications 279 (2022) 108452

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

CellListMap.jl: Efficient and customizable cell list implementation for 

calculation of pairwise particle properties within a cutoff ✩,✩✩

Leandro Martínez

Institute of Chemistry and Center for Computing Engineering & Sciences, University of Campinas, Campinas, SP, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 February 2022
Received in revised form 5 June 2022
Accepted 9 June 2022
Available online 16 June 2022

Keywords:
Cell lists
Particle simulations
Cutoff
Neighbor list

N-body simulations and trajectory analysis rely on the calculation of attributes that depend on pairwise 
particle distances within a cutoff. Interparticle potential energies, forces, distribution functions, neighbor 
lists, and distance-dependent distributions, for example, must be calculated. Cell lists are widely used to 
avoid computing distances outside the cutoff. However, efficient cell list implementations are difficult 
to customize. Here, we provide a fast and parallel implementation of cell lists in Julia that allows 
the mapping of custom functions dependent on particle positions in 2 or 3 dimensions. Arbitrary 
periodic boundary conditions are supported. Automatic differentiation and unit propagation can be used. 
The implementation provides a framework for the development of new analysis tools and simulations 
with custom potentials. The performance of resulting computations is comparable to state-of-the-art 
implementations of neighbor list algorithms and cell lists, available in specialized software. Examples are 
provided for the computation of potential energies, forces, distribution of pairwise velocities, neighbor 
lists and other typical calculations in molecular and astrophysical simulations. The Julia package is freely 
available at http://m3g .github .io /CellListMap .jl. Interfacing with Python and R with minimal overhead is 
possible.

Program summary
Program Title: CellListMap.jl
CPC Library link to program files: https://doi .org /10 .17632 /5kf5zh9zms .1
Developer’s repository link: http://github .com /m3g /CellListMap .jl
Licensing provisions: MIT
Programming language: Julia
Nature of problem: Particle simulations and trajectory analysis, in chemistry, atomic and molecular 
physics, and astrophysics, require the computation of pairwise properties within a cutoff, for example 
potential energies, forces, distance distributions, among others. Cell lists can be used to accelerate these 
computations and are used in major simulation software, but these implementations cannot be easily 
adapted for novel custom calculations, simulations, and novel research.
Solution method: This package provides a fast and customizable implementation of cell lists for the 
development of new simulation and analysis software for particle simulations. To provide a customizable 
implementation, the Julia language was used, allowing the user to write high-level yet performant custom 
functions to be mapped into pairs of particles satisfying the distance constraint desired. State-of-the art 
performance is obtained in serial and parallel executions.
Additional comments including restrictions and unusual features: The implementation is type-generic, 
allowing systems in 2 or 3 dimensions to be studied, and the computations can be written in such 
a way to allow the propagation of units, uncertainties, and automatic differentiation of the computed 
properties.

© 2022 Elsevier B.V. All rights reserved.
✩ The review of this paper was arranged by Prof. David W. Walker.
✩✩ This paper and its associated computer program are available via the Computer 
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).
E-mail address: lmartine@unicamp.br.

https://doi.org/10.1016/j.cpc.2022.108452
0010-4655/© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Particle simulations are fundamental in the study of molecular 
and astrophysical phenomena, among other areas of research. The 
simulations’ implementation is dependent on the calculation of 

https://doi.org/10.1016/j.cpc.2022.108452
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108452&domain=pdf
http://m3g.github.io/CellListMap.jl
https://doi.org/10.17632/5kf5zh9zms.1
http://github.com/m3g/CellListMap.jl
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:lmartine@unicamp.br
https://doi.org/10.1016/j.cpc.2022.108452


L. Martínez Computer Physics Communications 279 (2022) 108452

Code 1. Minimal working example for the computation of the sum of distances of 100k particles in a cubic periodic box of side 1 and a cutoff of 0.05. More details in 
supplementary notebook 1.
particle interactions, and their analysis is dependent on the com-
putation of different attributes from the resultant trajectories. The 
computation of distances between particles within a cutoff is re-
quired for many of these calculations, being frequently the most 
computationally expensive step.

The computation of all pairwise distances, with a cost of O (n2) 
where n is the number of particles, rapidly becomes too expen-
sive for practical application. As a result, techniques that prevent 
probing particle pairs that are too far apart to show important in-
teractions or correlations must be utilized. The most often used 
algorithms are those based on distance trees or cell lists [1]. In 
simulations with periodic boundary conditions, cell lists are more 
common because they adapt to the existence of clearly defined co-
ordinate extrema, necessary for the partitioning of the space into 
cells.

The implementation of a cell list algorithm is relatively straight-
forward and provides a massive speedup relative to computing all 
pairwise distances. However, achieving cutting-edge performance 
in such an implementation, particularly in the presence of periodic 
boundary conditions and aiming the use of parallel processing, de-
mands specialized methods [2–4]. Performant cell list algorithms 
are, of course, implemented in all major particle simulation pack-
ages [4–10], and also in astrophysical simulation and analysis tools 
[11]. These implementations are highly specialized for computing 
intermolecular potentials and forces, ensuring high-performance 
computing speed and scalability. However, being written in low-
level languages and integrated into the framework of the applica-
tion, are not accessible for easy customization and reuse.

CellListMap.jl aims to provide a customizable, yet fast and easy-
to-use, implementation of cell lists for custom particle simulations 
and analyses. Written in Julia [12], it allows the user to quickly 
write efficient yet high-level functions to be computed between 
pairs of particles that are close to each other, to compute distance 
dependent properties. With CellListMap.jl, it is possible to write 
custom analysis routines or simulation codes in a few lines of in-
teractive Julia code, with a performance comparable with state-of-
the-art analysis and simulation tools. A comprehensive user man-
ual is available, where examples are supplied of the computation 
of many typical molecular and astrophysical properties, as well as 
of a complete particle simulation code. The package is freely avail-
able under the MIT license, at http://m3g .github .io /CellListMap .jl.

2. Approach

The purpose of the current implementation of cell lists is 
to provide a framework for custom calculations of pairwise-
dependent properties in particle systems. We assume that particle 
coordinates are available. For example, trajectories obtained with 
the most popular molecular simulation packages can be read with 
the Chemfiles suite [13]. Here we describe the basic elements of 
the package interface. Further examples and advanced options are 
described in the user manual. All the code blocks presented in this 
article are available as Pluto notebooks with detailed step-by-step 
documentation, at http://github .com /m3g /CellListMapArticleCodes.
2

2.1. Overview

The purpose of the package is to allow the efficient compu-
tation of properties dependent on the distances, within a cutoff, 
between particles in a 2D or 3D system. The package supports gen-
eral periodic boundary conditions. Therefore, the typical steps for 
setting up a calculation using CellListMap.jl are, given the coordi-
nates of the particles:

1. Define a function which, given the distance (or coordinates) of 
a single pair of particles updates the property to be computed. 
This is implemented by the user for each application.

2. Define the system spatial geometry and cutoff: In this step, the 
system Box is defined, carrying the information about periodic 
boundary conditions and cutoff.

3. Compute the cell lists.
4. Map the function defined in step 1 through the cell lists, ob-

taining the updated property.

Step 1 defines the property to be computed, as desired by the 
user. Steps 3 to 4 consist of calling three specific functions of the 
package, with minimal user intervention. Scalar properties, as po-
tential energies, can be computed, and vector properties, as forces 
on each particle, can be updated using this interface. Advanced us-
age options allow these computations to reuse memory buffers, for 
optimal efficiency. In the simpler cases, steps 3 and 4 will run in 
parallel without further user intervention. Custom parallel splitting 
and reduction functions can be provided by the user if required by 
the properties to be computed.

2.2. Minimal example

We split the calculation into three steps: 1) the definition of the 
system geometry and cutoff; 2) the construction of the cell lists; 3) 
the mapping of the function to be computed into the cell lists.

A minimal illustrative working example is shown in Code 1, 
where the sum of the distances of random 3D particles generated 
in a cube of unitary sides is performed.

In the first line of Code 1 the package is loaded, and in line 2 
a random set of 100k particle positions is generated. The system 
geometry and cutoff are set in line 3. Here we illustrate the use of 
a periodic cubic box of side 1.0 and a cutoff of 0.05. The cell lists 
are constructed in line 4, and in line 5 the function to be mapped 
is evaluated.

2.3. The mapped function

The interface of the map_pairwise function assumes the defini-
tion of the function to be mapped, the initial value of the output
variable (zero in the example) and the box and cell list. The func-
tion to be mapped has to be the structure shown in Code 2.

Internally, map_pairwise calls a function with the x, y, i, j, d2, 
and output arguments, corresponding to the positions of particles i
and j (following the minimum-image convention) of the input set, 
the squared distance between the particles, and the output vari-
able, which will be updated and returned from the function. An 

https://m3g.github.io/CellListMapArticleCodes/CodeBlock1.jl.html
http://m3g.github.io/CellListMap.jl
http://github.com/m3g/CellListMapArticleCodes


L. Martínez Computer Physics Communications 279 (2022) 108452

Code 2. General format of the function to be evaluated for each pair of particles closer than the cutoff distance, to be passed to the map_pairwise function. More details in 
supplementary notebook 2.

Code 3. Initialization of the system Box, with orthorhombic or triclinic periodic boundary conditions. The system’s geometry is defined by the type of unit cell matrix, and 
an orthorhombic cell is assumed if a vector of box sides is supplied. More details in supplementary notebook 3.
external function defined by the user must both receive an out-
put variable as an argument and return it, but it may or may not 
require the use of the positions, indexes or squared distance be-
tween the particles, depending on the property to be computed. 
If one or more of these parameters are not required, they can be 
safely ignored within the method or simply removed by using an 
anonymous function, as shown in Code 1. Additional inputs, such 
as particle masses or Leonard-Jones parameters, can be specified 
and delivered to the inner function via a closure.

The variable defining the output may be mutable and im-
mutable. To conform with the Julia convention of functions ending 
with ! being mutating functions, map_pairwise! and map_pairwise
(with the bang, or not) are aliases of the same function, which al-
ways return the resulting output value. If the output variable is 
immutable, its value won’t be mutated, and the assignment of the 
result to the output needs to be explicit. In these cases, it is cus-
tomary to use the map_pairwise (without !),

output = map_pairwise(f::Function, output0, box, cl)

where output0 represents the initial value of the immutable out-
put. When, on the contrary, the output is a mutable variable (an 
array, for example), the map_pairwise! version is preferred for code 
clarity, and the reassignment is not needed (nor recommendable), 
as in

map_pairwise!(f::Function, output0, box, cl)

The mapped function will be evaluated only for the pairs of 
particles which are within the desired cutoff. The squared distance 
between the particles is provided because it is precomputed and 
usually required for the evaluation of distance-dependent pairwise 
properties.
3

2.4. Coordinates

Coordinates can be given in two or three dimensions, as ma-
trices with dimensions (N, M) where N is the dimension of the 
space and M the number of particles, or as vectors of vectors. 
Usually vectors of StaticArrays are used to represent particle coor-
dinates. The memory layout of these arrays is the same as that of 
the matrices, and they can be converted into each other by a rein-
terpretation of the data. The coordinates can be also provided as 
an array of mutable vectors, which is not optimal for performance 
of particle computations in general, but won’t have a noticeable 
impact in the performance of CellListMap because the coordinates 
are copied into the cell lists with static memory layouts.

2.5. The system boundary conditions, and cutoff

The construction of cell lists requires that the particles are con-
tained within a limiting box, which most commonly is associated 
with the periodic boundary conditions used. CellListMap accepts 
general (triclinic) periodic boundary conditions. The properties of 
the system periodic box, including the cutoff for the interactions 
used, are defined with the Box constructor, as illustrated in Code 3
for cubic and triclinic boxes.

2.6. Construction of the cell lists

The cell lists are constructed with the CellList constructor, illus-
trated in Code 4. The output of which will display the number of 
particles of the system, the number of cells with real particles, and 
the total number of particles in the computing box.

On the construction of the cell lists, the real particles are repli-
cated to create ghost cells around the boundary conditions which 
respect the periodicity and guarantee that real particles will inter-
act with the correct number of neighbors. This strategy allows the 
computations of the function mapping to be completely agnostic 

https://m3g.github.io/CellListMapArticleCodes/CodeBlock2.jl.html
https://m3g.github.io/CellListMapArticleCodes/CodeBlock3.jl.html


L. Martínez Computer Physics Communications 279 (2022) 108452

Code 4. Computing the cell lists from the coordinates, x, and the system box. Particles are replicated at the boundaries to avoid coordinate wrapping in the function mapping 
step. More details in supplementary notebook 4.

Code 5. Mapping the computation of a property into the pairs of particles which, according to the cell lists and system box properties, are within the desired cutoff. In 
the first example the sum of the inverse of the distances is computed. In the second example, masses are used to compute a putative central potential. More details in 
supplementary notebook 5.
Fig. 1. Typical computing box with a triclinic cell, in two dimensions. The real par-
ticles are depicted in green. Ghost particles (light red) are generated such that 
coordinate wrapping and minimal image calculations are not necessary in the func-
tion mapping step. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

to the periodic boundaries, and no coordinate wrapping is needed 
after this step. It turns out that this particle replication is com-
pensatory for performance [14,15]. The number of ghost particles 
is dependent on the geometry of the box and on the cutoff. For 
very large systems, it is generally expected that the cutoff is much 
smaller than the system size, and thus this additional memory 
requirement should not be the limiting factor for the computa-
tions.

A typical particle set used in the computing step is shown in 
Fig. 1. The real particles are shown in green, and the ghost particles 
in light red.

The cell lists carry a copy of the coordinates, which are stored 
in independent vectors for each cell. This increases the locality 
4

of the memory accesses relative to alternative (linked-list) ap-
proaches, accelerating the computation.

2.7. Mapping the pairwise computation

Given the box and the cell list, any custom function can be 
mapped into the pairs that satisfy the distance cutoff. The user 
needs to define the function to be computed for one pair of parti-
cles, to update the output property. This function is then passed as 
a parameter to the map_pairwise or map_pairwise! functions. The 
mapped function may require additional data, in which case it will 
close over the data, as shown in Codes 2 and 5. Additional examples 
illustrating the full flexibility of the implementation, and resulting 
performance are described in Section 3 and in the user manual.

At line 2 of Code 5 the function to be mapped is defined. The 
interface requires 5 arguments: the coordinates of the two par-
ticles, their indices, their squared distance, and the output to be 
computed. Here, u is a scalar, which is initialized at zero at line 3. 
The function in line 2 must be read as: given the input parame-
ters of the left, return the result of the computation on the right, 
and is the standard Julia anonymous function syntax. Here, the ac-
tual computation only requires the squared distance between the 
particles, and the remaining arguments are ignored. In the exam-
ple in lines 6 to 10 the masses are closed over by the anonymous 
function and are used for the computation of a potential energy. 
The closed-over variables must not be modified, because concur-
rent access can occur when using multi-threading.

At the same time, the implementation of this mapped function 
should be, for the user, agnostic to the use of multi-threaded code. 
Internally, the output variable to be updated will be copied and 
updated without concurrency by each thread, to be finally reduced 
when the computation is finished. This does not cause memory is-
sues if the output variable to be updated is a scalar, but has to be 
taken into consideration if an array (for instance with length equal 
to the number of particles, as an array of forces) has to be up-
dated. In memory-restricted scenarios this can be a limiting factor 
for the use of the package. Also, the preallocation of these large 
threaded buffers may be important for the performance of itera-

https://m3g.github.io/CellListMapArticleCodes/CodeBlock4.jl.html
https://m3g.github.io/CellListMapArticleCodes/CodeBlock5.jl.html


L. Martínez Computer Physics Communications 279 (2022) 108452
tive computations. Preallocation is possible by passing an optional 
output_threaded parameter to the map_pairwise function.

2.8. Current implementation details

The basic implementation of a cell list algorithm consists in 
partitioning the space into cells, more simply with a side equal to 
the cutoff, and by integer division of the coordinates of each par-
ticle by the cutoff, assigning to which cell each particle belongs. 
Then, a loop over the cells is performed, and the interactions of 
the particle of each cell with the particles of the neighboring cells 
are computed. In 2D each cell has 8 neighboring cells, and in 3D 
each cell has 26 neighboring cells. If the size of the system is much 
greater than the cutoff, the number of distances computed is dras-
tically reduced.

In order to obtain a cutting-edge cell list implementation and 
function mapping, many improvements over the most simple al-
gorithm are necessary. The following strategies were implemented 
up to version 0.7.13 of CellListMap.jl. These are implementation de-
tails, such that improvements on each of the methods is possible 
in future versions:

Optimizations for cell list construction and pass-through

Ghost particles are created (see Fig. 1) at the boundary of the 
periodic system, to avoid wrapping coordinates in the mapping 
phase of the calculation. This also avoids the necessity of check-
ing if the cell is in the boundary of the system and corresponding 
computation of minimum-image of coordinates in the hot loops. 
This removes branches in the code and increases the locality of 
the computations. This strategy requires some additional memory, 
but is known to be important for optimal performance in similar 
computations [15].

For each neighboring cell, the particle positions are projected 
on the axis connecting cell centers, following the method proposed 
by Willis et al. [16] or similarly by Gonnet [17]. The distances are 
computed only for the pairs of particles for which the projected 
distances satisfy an appropriate condition associated with the cut-
off. Unlike these reference implementations, we opted to perform 
a partial sorting (partitioning) of the distances along the projected 
axis, instead of a complete sorting. The partition is performed on 
local structure data carrying the particle coordinates of the cells 
involved, and needs to be carried over for each particle of the ref-
erence cell, but it is compensatory because it requires a O (n) pass 
on the array of particles of the neighboring cell.

Additionally, the side of the cells can be tuned to be any integer 
fraction of the cutoff (the lcell parameter of the Box constructor). 
This reduces the number of unnecessary distance computations at 
the expense of running over additional neighboring cells. For typ-
ical molecular densities having cells with a side half of the cutoff 
(lcell=2) is usually the best choice [18–20], although the projection 
of coordinates mentioned above reduces the impact of this param-
eter on the number of computations.

For Orthorhombic cells, only half of the neighboring cells are 
evaluated, to avoid the repeated distance computations for sym-
metric particle pairs, and the computations run over cells contain-
ing real particles only. Thus, the algorithm does not scale badly for 
inhomogeneous density systems, with possibly many empty cells.

Optimizations on memory access

In the cell list structures, the coordinates are stored as static ar-
rays, which allow all the computations to be non-heap-allocating 
in the mapping function. If the mapped function is non-allocating, 
the full mapping won’t be allocating either, except for auxiliary 
5

variables associated with multi-threading. We use a vector of lists 
to contain the particles on each cell (not the indexes, but an im-
mutable copy of the particle coordinates and index). This avoids 
the use of linked lists, reducing non-sequential memory accesses 
in the hot computation loops.

Considerations on the current parallelization strategy

The parallelization is performed by spawning asynchronous 
tasks to which fractions of the number of the cells with real par-
ticles are attributed. The computations associated to each cell are 
assigned to threads in an alternating fashion, such that neighbor-
ing cells are associated to different threads. This improves the load 
distribution in the cases where the particle distribution is inhomo-
geneous. The number of tasks may be greater than the number of 
available cores or threads, and because the tasks are initialized on 
any available thread, this minimizes overheads associated with the 
inhomogeneous distribution of computations. The number of tasks 
can be tuned by the user to fit each specific problem (nbatches pa-
rameter of the CellList constructor).

To support the computation of general pairwise-dependent 
properties without transferring to the user the responsibility of 
dealing with concurrent access to the output variables, the out-
put is copied for each task. Therefore, if the parallelization is done 
by splitting the computation into N threads, the output will inter-
nally be mapped into a vector of N copies of the output, which will 
be updated independently by each thread. By default, the reduc-
tion of the result consists of the sum of the output of each thread, 
however custom reduction functions can be provided. Copying the 
output for each thread can be memory-limiting if dealing with out-
put arrays for very large systems, but is efficient relative to the use 
of atomic operations or locks, and is probably the best alternative 
for most applications.

3. Examples

Here we provide small code snippets illustrating the flexibility 
and user-friendly interface of CellListMap.jl for the computation of 
different common pairwise particle properties. More examples are 
available and will be continually updated in the user guide. In the 
following examples, we use some auxiliary functions to generate 
toy problems, which are also implemented in CellListMap, notably 
the CellListMap.xatomic and CellListMap.xgalactic functions, which 
generate particle coordinates and a cell with boundary conditions 
that mimic densities of typical molecular condensed phase systems 
or astrophysical galaxy distributions.

3.1. Computing Lennard-Jones potential energy and forces

Computing intermolecular potential energies and forces is com-
mon in molecular simulation and analysis software. Here we il-
lustrate how a Lennard-Jones potential can be computed with the 
CellListMap interface. The energy is a scalar and the forces are 
mutable arrays, such that these examples illustrate rather gener-
ically how these two types of output data have to be handled. 
The efficient computation of Lennard-Jones energies and forces 
usually requires the decomposition of the exponential operations 
into smaller powers. Here, for simplicity of the codes, we use the 
FastPow. jl package that performs such decomposition though the 
@fastpow macro.

The computation of a Lennard-Jones potential for 3 million 
particles in 3 dimensions is illustrated in Code 6. The example 
resembles the minimal example in Code 1, except that here we 
implement the ulj function separately, and we pass the ε and σ
parameters (of Neon) to the function that computes the energy 



L. Martínez Computer Physics Communications 279 (2022) 108452

Code 6. Calculation of a simple Lennard-Jones potential energy of 3 million Neon atoms in 3 dimensions, in a periodic cubic box with sides of 31.034 nm and a cutoff of 1.2 
nm. More details in supplementary notebook 6.

Code 7. Example code for the calculation of a vector of forces between particles. The function will update the f vector. Line 16 is only to generate a set of one million 
particles with a typical molecular density. More details in supplementary notebook 7.
by closing over the values in the anonymous function definition 
within the call to map_pairwise.

In Code 7 we provide an example of the computation of pair-
wise forces, where the output variable is a mutable array. We use 
in this case the map_pairwise! syntax, to indicate mutation. The 
computation of the forces requires the identification of the parti-
cles and the knowledge of their relative positions in space. Thus, 
the vector connecting the particles is computed in line 3, and the 
update of the forces vector occurs in lines 5 and 6. Note that since 
static arrays are used for the representation of the coordinates of 
the particles, the function is non-allocating.

An important remark about Code 7 is that, if Julia is started 
with multi-threading, this code will automatically run in parallel, 
and the user doesn’t need to modify the flj function to account for 
the possible concurrent access of the force vectors. This is because, 
as explained in the methodological details, each thread will update 
an independent copy of the force vector, which will be summed up 
to update the output force array.

3.2. Parallel computation of a k-nearest-neighbor list

All the examples shown up to now run in parallel without 
further intervention from the user, except for starting Julia with 
multithreading. Many options to improve the performance of par-
allel runs are available and described in the user manual. Here, 
we focus on the fact that some parallel computations require cus-
tom reduction functions. In the example of Code 8 we develop a 
(cutoff-delimited) k-nearest neighbor code, which can run in par-
allel.

Code 8 illustrates many important characteristics of the Cell-
ListMap.jl interface. First, we compute the nearest neighbors be-
6

tween two independent sets of coordinates (x and y), and thus 
in line 23 we introduce the syntax for the construction of a cell 
list from two sets of coordinates. The cell list will be built for 
the smaller set by default. To parallelize the construction of the 
neighbor list, a fraction of the cells is analyzed in each thread, 
and independent lists are built without concurrency. The merg-
ing of the lists implies checking which are the smaller distances 
between the threaded lists. Thus, a custom reduction function is 
necessary, and is implemented in lines 13 to 18. The custom re-
duction function is provided as an optional keyword parameter to 
the map_pairwise! function, in line 27 of the code.

3.3. Type propagation: units, uncertainties, and differentiability

Julia allows implementation of generic functions rather simply, 
and variable types can be propagated through the code. This prop-
agation of types allows, for example, for the automatic differenti-
ation of Julia code. CellListMap.jl was written with those capabili-
ties, and given that it is implemented with physics and chemistry 
problems in mind, we exemplify how units, uncertainties, and au-
tomatic differentiation can be used. The type system also allows 
the use of floating points of any precision or other custom defined 
types whenever the proper arithmetic is defined for them. Code 9
displays simple examples of these features. We use in this example 
the Unitful package for definition of units, the Measurements pack-
age for uncertainty propagation [21] and the ForwardDiff package 
for automatic differentiation [22]. Each of the three examples illus-
trate how the properties decorated with the specific type systems 
are propagated.

In lines 3 to 7 we show that by providing coordinates and box 
properties with units, the output of the computation of the sum 

https://m3g.github.io/CellListMapArticleCodes/CodeBlock6.jl.html
https://m3g.github.io/CellListMapArticleCodes/CodeBlock7.jl.html


L. Martínez Computer Physics Communications 279 (2022) 108452

Code 8. Example code for the calculation of a nearest-neighbor list between two independent sets of particles. A custom reduction function is required to merge lists, keeping 
the minimum distances. More details in supplementary notebook 8.

Code 9. Units (lines 3-7), uncertainties (lines 9-13) [21], and automatic differentiation (lines 15-27) [22] propagating through pairwise computations with CellListMap.jl. More 
details in supplementary notebook 9.
7

https://m3g.github.io/CellListMapArticleCodes/CodeBlock8.jl.html
https://m3g.github.io/CellListMapArticleCodes/CodeBlock9.jl.html


L. Martínez Computer Physics Communications 279 (2022) 108452
of the distances is obtained also with the correct units. In lines 9 
to 13 we create a set of coordinates with uncertainties, which are 
propagated through the computation of the sum of the distances, 
resulting in an uncertainty of the result (line 13). Finally, in lines 
15 to 27 a function to compute the sum of the distance is auto-
matically differentiated relative to each coordinate.

4. Performance

Here we illustrate the performance of custom calculations us-
ing CellListMap in comparison with popular and cutting-edge im-
plementations of equivalent calculations performed by specialized 
software.

The benchmarks described in this section were run with Cell-
ListMap.jl version 0.7.2 and NearestNeighbors. jl version 0.5.0 in Julia 
1.7.0; scipy version 1.3.3 and halotools version 0.7 within ipython3 
version 7.13.0; and NAMD 2.14-Multicore. The comparison of neigh-
bor list algorithms was performed on a personal computer with 4 
Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz (8 threads available) 
and 16 GB of RAM. The comparison with halotools was performed 
in a cluster compute node with 16 Intel(R) Xeon(R) CPU E5-2650 
v2 @ 2.60 GHz CPUs, which is able to run 32 processes through 
multi-threading. The benchmarks comparing CellListMap.jl to NAMD
were run in a compute node with 2 AMD EPYC 7662 processors 
(128 cores) and 512 GB of RAM.

4.1. Computation of neighbor lists

Several implementations of methods for obtaining neighbor 
lists are available. Most can be used to obtain the lists of pairs 
of particles within a cutoff, and then be used for the computation 
of pairwise properties. In the context of the use of CellListMap.jl
this is suboptimal, because for most computations the list of pairs 
is not explicitly needed, and with CellListMap.jl the computation 
of the properties of interest can be computed directly. Neverthe-
less, since neighbor list algorithms are very general and commonly 
used for these applications, we implemented a CellListMap.neigh-
borlist list function and compared the resulting performance with 
two important implementations of tree-based algorithms available 
in Julia and Python. We do not consider periodic boundary condi-
tions in these neighbor list calculations, and for CellListMap.jl this 
actually carries the additional cost of computing the extrema of 
the distribution of points to set a bounding box large enough to 
avoid periodic interactions within the desired cutoff.

The comparison is performed against the NearestNeighbors.jl Ju-
lia package [23] and with the Python scipy.spatial.cKDTree_query_
ball_point [24] implementation of the tree algorithms. We take ad-
vantage of this last comparison to illustrate that CellListMap.jl can 
be used from within Python with minimal overhead using Julia-
Call (see the corresponding manual section at https://m3g .github .
io /CellListMap .jl /0 .7 /python/) [25].

The benchmark consisted in computing all pairs within a cutoff 
of particles of two disjoint sets. The smaller set size varied be-
tween 10 and 100,000 particles, while the largest set had 1,000,000 
particles. The distance trees and cell lists are constructed for the 
smaller set, and the pairs are constructed by running over the par-
ticles of the largest set. This provides the best performance for the 
range of set sizes studied here. The density of the systems was al-
ways 100 particles/nm3, the atomic density in water, and the cutoff 
was set to 1.2 nm. Thus, the number of distance computations is 
similar to that of a typical molecular condensed-phase system.

Fig. 2 compares the performance of each implementation of 
neighbor lists. The baseline is python scipy.spatial.cKDtree.query_
ball_point performance. The performance of the other implementa-
tions is shown as the speedup relative to this one. Both the serial 
8

Fig. 2. Construction of in-range neighbor lists. A cutoff of 1.2 nm for a system with 
water-like atomic density was used in all cases. The pairs of particles closer than 
the cutoff were probed for two sets, the greatest one with 1 million particles, and 
the smaller one with a variable number of particles from 10 to 100.000. The con-
struction of distance trees is more expensive than that of cell lists, and for the 
typical density of molecular systems CellListMap.jl is frequently faster than the tree-
based methods. Parallel runs of CellListMap.neighborlist were executed in a 4-core 
(8 threads) Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz notebook, with Julia being 
started with the −t8 command-line option.

and parallel implementations in CellListMap.jl can provide signifi-
cant speedups relative to the alternatives in this setup, depending 
on the system size. Therefore, the package can be an interesting 
alternative to neighbor list computation. An important note is that 
the relative cost of computing the cell lists vs. distance trees can 
vary widely depending on the distribution and number of points. 
Cell lists are faster for roughly homogeneous distributions and cut-
offs much smaller than the system size.

4.2. Atomistic simulations: comparison with NAMD

NAMD is one of the central packages of the molecular dynam-
ics simulation ecosystem [9], and regarded as having high per-
formance and scalability. Here, we compare the performance of a 
simulation of a Neon fluid where interactions are computed using 
CellListMap with a similar simulation performed with NAMD. Sev-
eral remarks are required for the appreciation of this comparison, 
which aims only to compare the implementation of the compu-
tation of short-ranged interactions in the two packages: 1) The 
particles in the simulation only interact through Lennard-Jones po-
tentials, thus no charges are involved. 2) The computation of long-
ranged electrostatic interactions is turned off in NAMD using the 
“PME off” keyword option. 3) We force NAMD to update the ver-
let lists at every integration step, which is not the default choice 
for an optimally performant simulation in practice. 4) NAMD can 
be run on GPUs, while CellListMap.jl still lacks a GPU port. Still, 
with those considerations, the present comparison does not con-
sider the possible additional overhead in NAMD associated with 
the many other features it has implemented and, on the other side, 
CellListMap.jl is a general-purpose, customizable implementation of 
cell lists, and not a specialized MD simulation software as NAMD.

The systems simulated consist of Neon fluids, simulated with 
CHARMM parameters [26], with a density of 100 atoms per nm3, 
corresponding to the atomic density of liquid water. Simulations 
with 10k and 100k particles were performed with orthorhombic 
periodic boundary conditions, a cutoff of 1.2 nm for Lennard-Jones 
interactions (no switching was used), and with temperature con-
trol through velocity rescaling at every 10 steps. A time-step of 1 fs 
was used in the Velocity-Verlet method to propagate the trajectory. 
The complete Julia simulation code has ∼150 lines, and is available 
at https://github .com /m3g /2021 _FortranCon /tree /main /celllistmap _

https://m3g.github.io/CellListMap.jl/0.7/python/
https://m3g.github.io/CellListMap.jl/0.7/python/
https://github.com/m3g/2021_FortranCon/tree/main/celllistmap_vs_namd


L. Martínez Computer Physics Communications 279 (2022) 108452

Fig. 3. Performance of a simulation of a Neon fluid performed with NAMD 2.14, compared with a similar simulation in which non-bonded interactions were computed with 
CellListMap, both with pairlist update at every step. Simulations with 10k and 100k particles were performed. In (A) and (B) we see that the simulations performed with 
both implementations have similar performances for 1 to about 10 processors, and that NAMD becomes faster for a larger number of cores. Good scaling is observed for up 
to 20 threads for both system sizes.
vs _namd. The code includes the definition of parameters, and the 
implementation of the Lennard-Jones force and energy functions. 
Nothing was parallelized in this code except the pairwise calcula-
tions which are delegated to CellListMap. The simulations of 10k 
Neon particles were run for 5000 steps, and the simulations with 
100k particles were run for 1000 steps.

Fig. 3 shows that the performance of the simulation using Cel-
lListMap is comparable to that of NAMD. The codes run at similar 
speeds with about 10 threads, and NAMD displays better scal-
ing. In these examples, however, NAMD was never much more 
than a factor of 2 faster than the simulation performed with Cel-
lListMap.jl. Thus, the implementation of cell lists available in this 
package is performant enough for the customized computation 
of short-ranged forces and other properties, in particular for the 
development of custom simulation analysis tools or flexible and 
customizable simulation codes, since in actual simulations the up-
dating of the cell lists is not performed on every step. This strategy 
is indeed implemented in Molly. jl [27], which is a central package 
in the Julia molecular simulation ecosystem.

The bottlenecks of the scaling of the CellListMap computation, 
relative to NAMD, are of different natures: Most importantly, the 
construction of the cell lists does not scale very well (see Sec-
tion 4.4), and becomes a limiting factor when the time required for 
this step becomes comparable with the time required for comput-
ing the forces. This inevitably occurs when many threads are avail-
able for computation, and particularly for smaller systems, where 
the computation of the forces is relatively cheap. The algorithm for 
the threaded construction of the lists by NAMD is certainly bet-
ter, and this is a possible future improvement to the package. Also, 
we did not parallelize any other computation in this simulation, 
meaning that the update of positions and velocities, and velocity 
rescaling, are performed in serial. When the cost of these opera-
tions becomes comparable to the cost of the force update (smaller 
systems and/or many threads available), the scaling is penalized by 
a constant factor.

4.3. Computing astrophysical galaxy pairwise velocities

A typical calculation in the field of astrophysics is that of rel-
ative velocities of galaxies as a function of their distances. Some 
packages, like halotools [11], implement a function to compute this 
distribution given the vectors of particle positions and velocities. 
9

The implementation of this computation in halotools is in Cython
and not easily customizable.

Code 10 shows the complete implementation of the computa-
tion of a distance-dependent pairwise velocity distribution with 
CellListMap.jl. We only need to define a function that updates the 
histogram given the distance and relative velocity between a pair 
of particles. Since we aim to obtain the distribution of velocities as 
function of the distances between the galaxies, the velocities are 
closed over in the anonymous function definition, in line 18. The 
binstep is also closed over in that definition.

The CellListMap.xgalactic is an auxiliary test function that gener-
ates a set of coordinates and a Box with a cutoff with dimensions 
typical of those of astrophysical calculations. The number of parti-
cles can be defined as an input parameter of the pairwise_velocities
function. The histogram being updated contains on the first col-
umn the number of pairs found with distances in each bin, and in 
the second column the sum of the pairwise velocities. The average 
velocity of the pairs is computed in the last line of the pairwise_ve-
locities function, to be returned (line 21).

Fig. 4 compares the performance of the code shown in Code 
10 relative to the halotools implementation of the same histogram 
computation. The computation based on CellListMap.jl performs fa-
vorably, even though it is not a specialized code for this specific 
calculation. Also, we were not able to run larger problems with the 
halotools implementation because of apparent memory limitations. 
With CellListMap, we were able to execute the code in this exam-
ple with 100 million particles, and required ∼70% of the available 
computer memory, for a running time of ∼30 minutes.

4.4. Scaling

Here we illustrate the dependence of the computational time 
required for a pairwise calculation as a function of the number 
of particles and with the number of processors used, in a shared 
memory architecture (currently CellListMap doesn’t support other 
types of parallelism). The computation under study is shown in 
Code 6, and consists of the calculation of a simple Lennard-Jones 
potential, typically found in molecular simulations. The density of 
the system in the examples is constant and equal to 100 particles 
per nm3, which is the atomic density of water.

Fig. 5 shows the time dependence of the serial and parallel ver-
sions of the computation of the Lennard-Jones potential as a func-
tion of the number of particles. From this perspective, the scaling 

https://github.com/m3g/2021_FortranCon/tree/main/celllistmap_vs_namd


L. Martínez Computer Physics Communications 279 (2022) 108452

Code 10. Computing a histogram of average pairwise velocities between galaxies, as a function of their relative distances, a typical calculation in astrophysical simulations. 
More details in supplementary notebook 10.

Fig. 4. Performance for the calculation of the pairwise velocities between “galaxies”, a typical calculation in the field of astrophysics, compared with the halotools package. In 
the “Constant density” panel, the density of the system and the cutoff correspond to the experimental universe galaxy density for a cutoff of 5 megaparsecs. If the density 
is increased, as shown in the “Constant volume” panel, the scaling is quadratic because the number of interparticle distances effectively increases. CellListMap.jl compares 
favorably with halotools v0.7 in both settings. These benchmarks were run in a compute node with 16 Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz CPUs; 32 threads were 
used for all runs.
of the package is good, being strictly linear. Parallelization requires 
some auxiliary memory, such that the maximum size of the prob-
lem accessible is somewhat smaller.

In Fig. 6, on the other hand, we show the scaling of the 
Lennard-Jones calculation as a function of the number of threads. 
We split the execution into two phases: the time required for map-
ping the function, and the time required for the construction of the 
cell lists. Clearly, the mapping scales better than the construction 
of the cell lists, and linear scaling with up to 128 threads can be 
obtained for large enough systems. On the other hand, the scal-
ing of the construction of the cell lists is not good, and achieves a 
10
maximum performance at about 8 threads, mostly independently 
of the number of particles. Because of this, by default the number 
of threads used for the construction of the cell lists is at most 8, 
and the number of threads used for the mapping phase is limited 
to 32 for smaller systems. These parameters can be tuned by the 
user.

Concerning the example in Code 6, the time required for the 
construction of the cell lists, without multithreading, is a tenth of 
the time required for mapping the Lennard-Jones potential on the 
pairs. Thus, the good scaling of the mapping phase is reflected into 
the overall performance of the calculation for a smaller number of 

https://m3g.github.io/CellListMapArticleCodes/CodeBlock10.jl.html


L. Martínez Computer Physics Communications 279 (2022) 108452
Fig. 5. Computing time as a function of the number of particles, for systems with 
constant density. The scaling is linear for serial or parallel runs. These benchmarks 
were run in a computing node with 32 Gb of RAM, which allowed the execution of 
the code with a maximum of 80 million and 60 million particles for the serial and 
parallel versions, respectively.

threads. When the number of threads is greater, the bottleneck can 
be the construction of the cell lists. Further improvements, particu-
larly on the cell list construction phase, are necessary. The relative 
importance of the cell list construction is dependent, of course, 
on the cost of the function being mapped and the total number 
of cores available. Typically the mapping phase is more expensive 
than the construction of the cell lists. If the function being mapped 
on pairs is expensive, if the cutoff is larger, or if the number of par-
allel threads is limited, it is typical that the bad scaling of the cell 
list construction is not relevant for the total computation time.

5. Conclusion

Here we present an implementation of cell lists in Julia, to be 
used in the development of custom simulation and trajectory anal-
ysis programs. The implementation is designed in such a way that 
it is simple to write small programs that can quite efficiently com-
pute pairwise dependent properties, for the particles of a system 
within a cutoff. The code is performant, comparable to cutting-
edge packages for computing neighbor lists, simulations and other 
n-body system properties in molecular and astrophysical simula-
tions. Future developments may include the improvement of the 
performance of the cell list construction phase and the implemen-
tation of GPU-accelerated or distributed-computing versions. The 
package is freely available at http://m3g .github .com /CellListMap .jl, 
Fig. 6. Scaling of the computation of a Lennard-Jones potential as a function of

11
and is already used in simulation production [27] and analysis [28]
code.

Supplementary information

Detailed explanations of the code blocks are available as Pluto 
notebooks at: http://github .com /m3g /CellListMapArticleCodes.

Conflict of interest

The author declares that there are no conflicts of interests.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

All data is available in the public repository of the code associ-
ated to the article.

Acknowledgements

The author acknowledges the financial support of FAPESP
(2010/16947-9, 2018/24293-0, 2013/08293-7, 2018/14274-9) and 
CNPq (302332/2016-2). Research developed with the help of 
CENAPAD-SP (National Center for High Performance Processing in 
São Paulo), project UNICAMP / FINEP - MCTI. The author is deeply 
indebted to many participants of the Julia Discourse forum, which 
contributed to many of the ideas incorporated into the package.

References

[1] S. Plimpton, J. Comput. Phys. 117 (1995) 1–19.
[2] P. Tamayo, J.P. Mesirov, B.M. Boghosian, in: Proceedings of the 1991 ACM/IEEE 

Conference on Supercomputing, 1991.
[3] G.S. Grest, B. Dünweg, K. Kremer, Comput. Phys. Commun. 55 (1989) 269–285.
[4] W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington, Comput. Phys. Commun. 

182 (2011) 898–911.
[5] K. Rushaidat, L. Schwiebert, B. Jackman, J. Mick, J. Potoff, in: IEEE 17th Interna-

tional Conference on High Performance Computing and Communications, 2015.
[6] M.P. Howard, J.A. Anderson, A. Nikoubashman, S.C. Glotzer, A.Z. Panagiotopou-

los, Comput. Phys. Commun. 203 (2016) 45–52.
[7] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, 

J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 29 
(2013) 845–854.

[8] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4 
(2008) 435–447.
the number of cores. The dashed black line corresponds to linear scaling.

http://m3g.github.com/CellListMap.jl
http://github.com/m3g/CellListMapArticleCodes
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1


L. Martínez Computer Physics Communications 279 (2022) 108452
[9] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, 
A. Shinozaki, K. Varadarajan, K. Schulten, J. Comput. Phys. 151 (1999) 283–312.

[10] T. Shire, K.J. Hanley, K. Stratford, Comput. Part. Mech. 8 (2021) 653–663.
[11] A.P. Hearin, D. Campbell, E. Tollerud, P. Behroozi, B. Diemer, N.J. Goldbaum, E. 

Jennings, A. Leauthaud, Y.-Y. Mao, S. More, J. Parejko, M. Sinha, B. Sipöcz, A. 
Zentner, Astron. J. 154 (2017) 190.

[12] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, SIAM Rev. Soc. Ind. Appl. Math. 
59 (2017) 65–98.

[13] G. Fraux, J. Fine, G.P. Barletta, L. Scalfi, M. Dimura, Chemfiles: read and write 
computational chemistry files. Version 0.9.3, https://chemfiles .org/, 2022.

[14] J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse, S.C. 
Glotzer, Comput. Phys. Commun. 192 (2015) 97–107.

[15] J. Teunissen, U. Ebert, Comput. Phys. Commun. 233 (2018) 156–166.
[16] J.S. Willis, M. Schaller, P. Gonnet, R.G. Bower, P.W. Draper, in: Parallel Comput-

ing Is Everywhere, IOS Press, 2018, pp. 507–516.
[17] P. Gonnet, J. Comput. Chem. 28 (2007) 570–573.
[18] J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, J.C. Marongiu, Int. J. Numer. 

Methods Fluids 67 (2011) 2026–2042.
[19] U. Welling, G. Germano, Comput. Phys. Commun. 182 (2011) 611–615.
[20] G. Sutmann, V. Stegailov, J. Mol. Liq. 125 (2006) 197–203.
[21] M. Giordano, Uncertainty propagation with functionally correlated quantities, 

arXiv:1610 .08716, 2016.

[22] J. Revels, M. Lubin, T. Papamarkou, Forward-mode automatic differentiation in 
Julia, arXiv:1607.07892, 2016.

[23] K. Carlsson, NearestNeighbors.jl: high performance nearest neighbor data 
structures and algorithms for Julia. v0.4.10, https://github .com /KristofferC /
NearestNeighbors .jl, 2021.

[24] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, 
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, 
J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, 
C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. 
Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, 
F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, Nat. Methods 17 (2020) 
261–272.

[25] C. Rowley and contributors, PythonCall.jl: Python and Julia in harmony, v0.9.0, 
https://github .com /cjdoris /PythonCall .jl, 2022.

[26] X. Zhu, P.E.M. Lopes, A.D. MacKerell, WIREs Comput. Mol. Sci. 2 (2012) 
167–185.

[27] J. Greener and contributors, Molly.jl: molecular simulations in Julia, https://
github .com /JuliaMolSim /Molly.jl, 2022.

[28] L. Martínez, J. Mol. Liq. 347 (2022) 117945.
12

http://refhub.elsevier.com/S0010-4655(22)00171-0/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC20AD4D76FE97759AA27A0C99BFF6710s1
https://chemfiles.org/
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
https://github.com/KristofferC/NearestNeighbors.jl
https://github.com/KristofferC/NearestNeighbors.jl
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib1FF1DE774005F8DA13F42943881C655Fs1
https://github.com/cjdoris/PythonCall.jl
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib4E732CED3463D06DE0CA9A15B6153677s1
https://github.com/JuliaMolSim/Molly.jl
https://github.com/JuliaMolSim/Molly.jl
http://refhub.elsevier.com/S0010-4655(22)00171-0/bib33E75FF09DD601BBE69F351039152189s1

	CellListMap.jl: Efficient and customizable cell list implementation for calculation of pairwise particle properties within ...
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Minimal example
	2.3 The mapped function
	2.4 Coordinates
	2.5 The system boundary conditions, and cutoff
	2.6 Construction of the cell lists
	2.7 Mapping the pairwise computation
	2.8 Current implementation details

	3 Examples
	3.1 Computing Lennard-Jones potential energy and forces
	3.2 Parallel computation of a k-nearest-neighbor list
	3.3 Type propagation: units, uncertainties, and differentiability

	4 Performance
	4.1 Computation of neighbor lists
	4.2 Atomistic simulations: comparison with NAMD
	4.3 Computing astrophysical galaxy pairwise velocities
	4.4 Scaling

	5 Conclusion
	Supplementary information
	Conflict of interest
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


