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Abstract

The analysis of amino acid coevolution has emerged as a practical method for protein

structural modeling by providing structural contact information from alignments of

amino acid sequences. In parallel, chemical cross-linking/mass spectrometry (XLMS)

has gained attention as a universally applicable method for obtaining low-resolution

distance constraints to model the quaternary arrangements of proteins, and more

recently even protein tertiary structures. Here, we show that the structural informa-

tion obtained by XLMS and coevolutionary analysis are effectively complementary:

the distance constraints obtained by each method are almost exclusively associated

with non-coincident pairs of residues, and modeling results obtained by the combina-

tion of both sets are improved relative to considering the same total number of con-

straints of a single type. The structural rationale behind the complementarity of the

distance constraints is discussed and illustrated for a representative set of proteins

with different sizes and folds.
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1 | INTRODUCTION

Protein structural modeling research has successfully explored dis-

tance constraints obtained from the analysis of amino acid coevolu-

tion.1-8 For the first time, clearly successful strategies to model

proteins without using structural information from analogous tem-

plates were developed to the point that structures with near-atomic

accuracy can be obtained.2-4,9,10 At the same time, the structural

information that can be derived from amino acid coevolution is limited

by the availability of a large set of evolutionarily related protein

sequences. Contact information can be obtained only for evolution-

arily conserved domains. Also, because of the nature of coevolution-

ary data, it is intrinsically difficult to obtain structural constraints

which are specific for a subfamily of proteins, and even less so for the

fold of a protein variant of an individual organism.

Concurrently, chemical cross-linking/mass spectrometry (XLMS) is

an experimental strategy that is gaining momentum in the structural

biology community.11-14 It relies on the exposure of protein structures

to reactants (the cross-linkers) which react to pairs of residues, for-

ming cross-links. The identification of the amino acid pairs cross-

linked is performed with high-resolution mass spectrometry, providing

a distance constraint that can be used to aid protein structure model-

ing.15 This strategy has been successful to obtain the quaternary

arrangement of protein complexes12,16-18 and attempts to obtain the

tertiary structure of proteins have been reported.15,19,20 Nonetheless,

the effectiveness of these methods still needs to be consolidated in a

general way.21-23 XLMS is a promising strategy for large-scale proteo-

mic approaches, as the experimental procedures are relatively simpleRicardo N. dos Santos and Guilherme F. Bottino contributed equally to this study.
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when compared to high-resolution protein structure determination

methods like X-ray crystallography, nuclear magnetic resonance, and

cryoelectron microscopy.24,25

In this work, we explore the structural nature of the contact infor-

mation obtained by XLMS in comparison with that obtained by amino

acid coevolutionary analysis. We quantify the complementarity

between the sets of contacts obtained by either method and find out

that the contacts obtained by one of the methods are almost exclu-

sively associated with pairs of residues not covered by the other

method. We demonstrate that this complementarity is consistent over

a variety of protein folds, and provide a structural rationale for the

result. Additionally, we show that the combination of the contact

information of both sets leads to optimal protein fold predictions rela-

tive to the use of one type of contact only, even for contact sets of

identical size, demonstrating the practical implications of the informa-

tion complementarity of these types of contacts.

2 | MATERIALS AND METHODS

2.1 | Target proteins and contact prediction

To compare the contact information derived from amino acid coevolu-

tion and cross-linking methods, we analyzed 15 X-ray crystallographic

models from distinct families of monomeric proteins with distinct sizes

and topological complexity (Table 1). The residue coevolution analysis

was performed using the direct-coupling analysis (DCA)4,5 implementa-

tion and multiple sequence alignments for family domains annotated in

Pfam41 (see Supporting Information). DCA contacts are classified

according to direct information4,5 (DI), and we take the N contact pre-

dictions with higher DI scores, where N is the number length of the

Pfam protein domain (See Table S1). These top N predictions were

shown to be typically in contact in the three-dimensional structure.4

Chemical cross-links were theoretically predicted using TopoLink42 con-

sidering the crystallographic models and the reactivity of three types of

state-of-the-art linkers: 1,6-Hexanediamine linker which binds acidic

side chains at both ends, the disuccinimidyl suberate (DSS) linker, which

binds nonspecifically Lys and Ser residues, and a recently developed

zero-length cross-linker, which induces the formation of direct bonds

between pairs of acidic/basic side chains43 (see Supporting Information

Section S2 for further details). In all cases, only contacts between atoms

belonging to residues distant on the primary sequence by more than

four residues were considered in our analyses. Figure 1A portrays an

example of a native contact map with highlights to DCA and XL con-

straints, and Figure 1B allows for visual appreciation of both constraint

types superimposed on the crystallographic structure of a protein.

2.2 | Evaluation of contact overlap and contact
structural properties

The overlap of the sets of contacts obtained by DCA or XL is reported

by a mutual overlap (MO) coefficient, defined as the fraction of con-

tacts of the smallest set (typically the XL set) that is coincident with

the largest set. That is, if nXL is the number of XL contacts and nXL\DCA

is the number of contacts in the intersection of both sets,

MO= nXL\DCA=nXL ð1Þ

The MO between the XL and DCA sets is usually small, as we will

show. The random probability that two sets of nXL and nDCA contacts

have nXL\DCA contacts in common is dependent on the total number

TABLE 1 Structural models studied, contact information obtained by each method, set intersection and mutual correlations. nDCA denotes the
number of contacts obtained by Direct Coupling Analysis. nXL is the number of potential cross-links predicted for each model. nXL\nDCA is the
number of contacts in both sets, and MO is the mutual overlap as defined in Equation (1). Probabilities of obtaining a random overlap smaller or
equal the observed nXL\nDCA are shown, for a pool of contacts with size based cutoff distance of 8 Å

PDB Size
nDCA

(Pfam length) nXL nXL\nDCA MO
random
p(n ≤ nXL\nDCA) δ = 8 Å

1G6X26 58 52 2 0 0.00 35.5%

1C7527 71 66 20 3 0.15 <0.1%

1D4T28 115 80 27 3 0.11 0.7%

1FK529 93 86 14 1 0.07 <0.1%

1C5230 131 89 66 1 0.02 <0.1%

1EW431 106 102 33 3 0.09 <0.1%

1B0B32 142 106 33 0 0.00 <0.1%

1D0633 130 112 17 2 0.12 <0.1%

1AMM34 174 162 28 1 0.04 0.1%

1G6735 450 184 97 5 0.05 <0.1%

1ARB36 263 194 38 0 0.00 <0.1%

1G8A37 227 221 104 2 0.02 <0.1%

1ATG38 231 226 41 3 0.07 <0.1%

1GCI39 269 232 45 3 0.07 <0.1%

1BXO40 323 306 63 7 0.11 <0.1%
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of contacts considered, nT. We computed nT for each protein as a

function of the distance cutoff, δ, between Cɑ atoms, and simulated

1000 times the random sampling of nXL and nDCA contacts in the set

to obtain the probability that the overlap of the sets is smaller or equal

than that the observed overlap. In Table 1, we report this probability

for δ = 8 Å, and in Figure 2A, we report the random MO as a function

of δ. The number of contacts for δ = 8 Å is �2 times the number of

residues of the protein, excluding all contacts between residues for

which the distance in the sequence is smaller than five residues.

The distances between the pair Cɑ atoms of each contact, and the

distance of each Cɑ atom to the surface of the protein were also com-

puted to produce the plots in Figure 2C,D. The algorithm to compute

the distance to the surface of the protein is described in Supporting

Information S6.

2.3 | Protein modeling experiments

Modeling experiments were performed for targets 1C52, 1C75, and

1D06. 1C75 is the smallest protein of the set, except for 1G6X which

we did not consider for this analysis because it has only two potential

XLs. 1C52 and 1D06 were chosen for having similar sizes and number

of DCA contacts, while having very different sets of XLs (66 and

17, respectively—Table 1). Models were generated with the Rosetta

ab initio framework44-49 (see Supporting Information S5), employing

for all contacts quadratically bounded potentials centered on the true

crystallographic distances between the residues' Cɑ atoms, with a tol-

erance of ±1 Å. Five experiments were performed, with (1) No con-

straints, and constraint sets comprised of (2) all nXL XLs for each

target, (3) randomly generated subsets of nXL DCA constraints for

each target, (3) randomly generated subsets of 2nXL DCA contacts for

each target, and (4) the combination of the nXL XLs and randomly

selected subsets of nXL DCA contacts. In the case of 1C52, where

nDCA < 2nXL the 2nXL DCA set was completed with the subsequent

contacts predicted by the DCA calculations. Thousand models were

generated in each experiment for each target. The quality of the

models was evaluated with the TM-score relative to the crystallo-

graphic structure.50 A TM-score greater than 0.5 indicates that the

overall fold of the structure is correct.51 The fraction of models

obtained with a TM-score > 0.5 can be considered a measure of the

overall success of a modeling experiment.23

3 | RESULTS AND DISCUSSION

A comparative example of the contact information obtained by DCA,

cross-linking, and the contact matrix of the X-ray model of a protein

structure is shown in Figure 1A. To build the figure, the native contact

matrix was computed considering a pair of residues in contact if the

distance between their Cα atoms was less than 10 Å. The figure

shows Thiamin Phosphate Synthase, a 225-amino acid residue protein

with a composition of 43% α-helical and 15% β-sheet structures (PDB

id. 1G67).35 DCA obtained 143 contacts compatible within 10 Å with

the crystallographic contacts within the top 184 best-ranked predic-

tions (where 184 is the number of residues of the conserved Pfam

domain). At the same time, 97 potential XLs were predicted for the

crystallographic structure. Visual inspection suggests that DCA con-

tacts and XLs rarely involve the same pairs of residues, as shown in

Figure 1B. In this case, only five contacts found by DCA associate

pairs of residues that are within cross-linking distance.

The mutual overlap, MO, of the XL and DCA contacts of 1G67, is

0.05, implying that �5% of the XL contacts were predicted as from

DCA. The probability that this small overlap is fortuitous is dependent

F IGURE 1 A, Contact map of the Thiamin Phosphate Synthase
(1G67) compared with the distance constraints obtained by DCA (red)
and potential XLs (blue). The few matching interactions are shown by
yellow squares. B, Visual representation of XLs constraints (blue) and
DCA constraints (red). The structural nature of each set leads to the
almost complete orthogonality of the contact information. Similar
results for all other proteins are shown in the SI
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on the number of possible contacts that could be probed by the

methods randomly. For a protein of N residues, this number is at most

(N2−N)/2, and this pool of contacts is so large that the probability of

overlap of two sets of contacts of the order of N contacts is very small.

Since this pool of contacts seems to be unrealistically large, we com-

puted the number of contacts that each protein has assuming different

distance cutoffs between the Cα atoms. Usually, two residues are said

to be in contact if the distances between their Cα atoms is less than

�8 Å.52 The number of contacts of a globular protein considering a cut-

off distance of 8 Å, disconsidering residues vicinal in the primary struc-

ture by less than five positions, is about two times the number of

residues. If a pool of 2 N contacts is considered for a random selection

of nXL and nDCA contacts, the probability of an overlap equal or smaller

than the observed ones is, now, very small (<0.1% in most cases), as

shown in Table 1. This probability increases with the increase in the

number of possible contacts, thus with the cutoff used to count them

from the protein structure. For the 1G67 protein, in particular, this

probability of a fortuitous lack of overlap increases to about 30% if the

pool of possible contacts contains about six times the number of resi-

dues (for a cutoff of �10 Å). For each of the proteins evaluated, the

probability of fortuitous MO smaller than the observed overlap is

shown in Figure 2A, as a function of the threshold defining the total

number of contacts of the protein (see Supporting Information S4). For

small cutoffs the probability of a fortuitous result is small, but for larger

cutoff distances it becomes non-depreciable for each protein (the sys-

tematic observation of an event of 50% probability in 15 proteins is

very small, nevertheless). Therefore, despite the fact that the overlaps

of the sets are very small, it is not possible from simple combinatorial

arguments to exclude completely the possibility that the contacts result

from random sampling within the possible protein residue pairs. A

F IGURE 2 A, Probability of observing a random mutual overlap, MO, smaller or equal to the observed MO, as a function of the contact
distance threshold that defines the number of contacts of the pool from which the random contacts are selected. B, Residue types involved in
DCA and XL contacts. C, Distance distribution of Cɑ atoms of DCA and XL contacts. The distributions are different, but with similar averages. D,
Distribution of the maximum distance to the protein surface of the Cɑ atoms of each pair of DCA, XL and all protein pairs of residues. At least one
of the DCA residues is significantly buried in the protein, with a distribution very similar to that of all protein contacts. XLs, as expected, are
concentrated on the protein surface [Color figure can be viewed at wileyonlinelibrary.com]
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rationale behind the lack of overlap and the demonstration that it has

practical implications is necessary. The visual appeal of the contacts in

Figure 1B suggests that the complementarity of the sets has structural

origins. Similar structural representation of DCA and XL contacts for all

proteins studied are shown in section S7 of the Supporting Information.

The first obvious reason for the lack of overlap of the two sets of

contacts is that the chemical nature of the residues involved in XL

contacts is restricted by the linkers considered. Most commonly,

linkers react with charged and polar residues. The linkers considered

in this study can react with Lys, Ser, Glu, and Asp residues, and this is

reflected in the distribution of residue types shown in Figure 2B. DCA

contacts can, in principle, span any type of residue. Indeed, Figure 2B

shows that the DCA contacts computed here are distributed among

all residue types, perhaps with a particular preference towards amino

acid residues with short side-chains as Ala, Val, and Gly. Therefore,

the lack of overlap of the contact sets is in part trivially explained by

the nature of the residues involved, yet this would not have any

impact on the use of these contacts for modeling purposes.

Most importantly, the residues involved in DCA or XL contacts are

distributed differently in the protein structures. First, as shown in

F IGURE 3 Model quality assessment for the modeling experiments performed. Distribution of output model quality determined by the TM-
Score of the alignment of each model against the crystallographic structure, and fraction of successful (TM-Score > 0.5) models for targets 1C75
(A), 1C52 (B), and 1D06 (C). Quality distributions illustrate successive elongations on the model quality peak since the unconstrained modeling
case all the way to the combination of XLs and DCA constraints, with successive increases of the population over 0.5 TM-Score. Successful
model fraction plots clearly show that the bar related to the combination of XLs and DCAs is roughly double the size of the DCA-only case,
whereas the 2 N DCA performance is slightly more modest in all cases [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2C, the distance distribution between Cα atoms of the contacts

is different. DCA contacts involve pairs of residues for which the dis-

tances appear to follow a binomial distribution, with distinct peaks at

�9 Å and a shoulder at �15 Å. The distance distribution of XL con-

tacts displays a single peak at �12 Å. The distribution averages are

shown by dots in Figure 2C and are surprisingly similar, being 11.8 Å

for DCA contacts and 10.6 Å for XL contacts. Nevertheless, the sole

facts that the distributions are different imply an additional factor for

the non-overlapping of the sets.

The most clear physical rationale for the complementarity of DCA

and XL contacts is, however, the fact that XL contacts involve

residues that must lay on the protein surface. Figure 1B and the

corresponding figures for all the other proteins (Supporting Informa-

tion Section S7) are clearly suggestive that DCA contacts, on their

turn, involve residues at the protein core. We computed the distance

of all the Cα atoms to the surface of the protein (Figure S1). Each con-

tact involves two residues, and we are interested in the greatest dis-

tance of the Cα atoms of these two residues to the surface, indicating

the penetration of the contact in the protein core. The distributions of

the maximum distances to the surface are shown in

Figure 2D. XL contacts almost invariably involve residues for which

the corresponding Cα atoms are closer than 3 Å from the protein sur-

face. DCA contacts display again a bimodal distribution, with a peak at

�2.5 Å and a second peak at �5 Å. The distribution of maximum dis-

tances to the surface between the residues of all protein contacts is

shown in green and, interestingly, it is very similar to that of DCA con-

tacts. This means that the DCA is sampling residues with a mostly ran-

dom distribution of positions in the protein in what concerns the

distance of the residues to the surface. The distributions of XL and

DCA maximum Cα distances to the surfaces are, clearly, very differ-

ent, and this is the most relevant structural rationale behind the small

overlap between these contact sets.

If the structural nature is different for DCA and XL contacts, the

information provided by each set in a modeling experiment may be

complementary. To test this hypothesis, we modeled the structures of

three of the proteins studied here with different constraints sets. For

these experiments, all contacts were considered to be correct, and the

harmonic constraining potentials were introduced centered at the dis-

tances associated to each pair of Cɑ atoms on the crystallographic

structures. Thus, we simulate an ideal scenario in which the true dis-

tances are known for all contacts, a no errors associated to informa-

tion uncertainty are involved. The goal of these experiments was to

show that the addition of XL constraints to a DCA contact set pro-

vided more structure information than the addition of the same num-

ber of new DCA constraints to the set. Figure 3 displays the results of

these modeling experiments for all three proteins. The quality of the

models is evaluated by computing their TM-score relative to the crys-

tallographic structure, and a TM-score greater than 0.5 usually indi-

cates that the overall fold of the structure is correct.

For example, for 1C75, about 12% of the models were obtained

with TM-scores greater than 0.5 in the modeling without constraints

(NO CST—Figure 3A). With 20 DCA contacts, �37% of the models

were obtained with the correct fold (20 DCA). With 20 XL constraints,

this fraction was �49% (20 XL). Thus, in this case the 20 XL contacts

appear to be more informative than the sets of 20 DCA contacts.

Using 40 DCA constraints the fraction of correct folds increased to

�66% (40 DCA), and using 20 DCA + 20 XL constraints about 75% of

the models were obtained with the correct fold (20 DCA + 20 XL).

Therefore, a better modeling is obtained if XL and DCA contacts are

combined relative to doubling the number of DCA contacts. In this

case, it is not possible to discern if this increased quality is a result of

the combined information of the sets or simply by the fact that the XL

contacts are more informative.

On the other side, for the other two proteins, 1C52 and 1D06, the

use of the same number of DCA or XL constraints provided very similar

modeling outputs when employed separately. For 1C52, using 66 DCA

contacts, �29% of the models were obtained with the correct fold,

while �30% of correct models were obtained using 66 XL contacts.

Thus, the DCA and XL sets are almost equally informative. By doubling

the DCA set to 132 constraints, �48% of the models are obtained with

TM-scores greater than 0.5. Finally, using 66 DCA constraints and

66 XL constraints, �60% of the models were obtained with the correct

fold. Therefore, the combined use of the constraints resulted in a

greater fraction of correct folds than the modeling with the same num-

ber of DCA-only contacts, even though the types of constraints were,

individually, equally informative. The same result was obtained for

1D06: using 34 DCA constraints resulted in �37% of models with TM-

score greater than 0.5, while �46% of the models with the correct fold

were obtained using 17 DCA + 17 XL constraints.

Thus, these modeling experiments endorse the thesis that con-

straint sets containing a combination of XL and DCA information have

inferior cross-redundancy when compared to pure DCA sets. This is,

of course, a combination of different factors: addition of extra DCA

contacts means sampling more from the same residue and distance

distribution, increasing the probability of redundant or correlated con-

straints, whereas introducing XLs enables sampling contacts that, for

the most part, are structurally unprecedented; with a small amount of

DCA contacts solving the protein core and another, uncorrelated set

of XLs solving the protein surface, constraint synergy is maximized in

a way that the duplication in the constraint set size translated to a

duplication in modeling performance when DCA and XLs were com-

bined, in comparison to the singular addition of extra DCAs, which

resulted in more humble increases, in the order of 60% to 70%.

4 | CONCLUSION

In summary, we quantify the degree of complementarity of the dis-

tance constraints obtained by coevolutionary analysis and those

obtained by chemical cross-linking. The contact sets obtained involve

residue pairs in regions of the structure that rarely coincide, because

of the nature of the structural information probed by each method.

The combined use of DCA and XL contacts in modeling experiments

provides better results than using a single contact type, even if con-

sidering the sets of contacts of similar number. The present results

explain the potential of the combination of these constraints to

630 DOS SANTOS ET AL.



improve structural modeling protocols.53 Since both methods are

developed with computational and experimental simplicity in mind,

and have widespread applicability, these results encourage the spe-

cific development of models and algorithms to combine DCA and XL

sources of interaction data.
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