
Comput Optim Appl (2011) 50:555–590
DOI 10.1007/s10589-010-9318-6

Inexact restoration method for minimization problems
arising in electronic structure calculations

Juliano B. Francisco · J.M. Martínez ·
Leandro Martínez · Feodor Pisnitchenko

Received: 20 July 2009 / Published online: 28 January 2010
© Springer Science+Business Media, LLC 2010

Abstract An inexact restoration (IR) approach is presented to solve a matricial op-
timization problem arising in electronic structure calculations. The solution of the
problem is the closed-shell density matrix and the constraints are represented by a
Grassmann manifold. One of the mathematical and computational challenges in this
area is to develop methods for solving the problem not using eigenvalue calculations
and having the possibility of preserving sparsity of iterates and gradients. The inexact
restoration approach enjoys local quadratic convergence and global convergence to
stationary points and does not use spectral matrix decompositions, so that, in princi-
ple, large-scale implementations may preserve sparsity. Numerical experiments show
that IR algorithms are competitive with current algorithms for solving closed-shell
Hartree-Fock equations and similar mathematical problems, thus being a promising
alternative for problems where eigenvalue calculations are a limiting factor.
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1 Introduction

Assume that the 3D coordinates of the nuclei of atoms in an atomic arrangement
are known. An electronic structure calculation consists of finding the wave functions
from which the spatial electronic distribution of the system can be derived [1–4].
These wave functions are the solutions of the time-independent Schrödinger equation
[4].

The practical solution of the Schrödinger equation from scratch is not possible,
except in very simple situations. The solutions are functions of R

3N → R which must
satisfy the Pauli exclusion principle and be anti-symmetric relative to interchange of
electrons, which introduce additional complications [4]. Therefore, simplifications
are made leading to more tractable mathematical problems.

The best-known approach consists of approximating the solution by a determi-
nant composed by a combination of N functions, known as the Slater-determinant.
In the most common case, in which the number of electrons of the system is even
and every electron is paired, one uses one function for each pair of electrons to com-
pose the Slater-determinant. One refer to systems satisfying these properties as “Re-
stricted Closed-Shell” systems, and only systems of this type are of concern here.
The approximation of the solution by the Slater-determinant allows for a significant
simplification of the Schrödinger equation, which results in a “one-electron” eigen-
value equation, known as the Hartree-Fock equation [4]. The solutions of this new
one-electron eigenvalue problem are used to reconstitute the Slater-determinant and,
therefore, the electronic density of the system.

Writing each of the N functions composing the Slater-determinant as linear com-
binations of a given basis with K elements (here and in the sequel N denotes the
number of electron pairs), the unknowns of the problem become the coefficients of
each function with respect to the chosen basis, giving rise to a nonlinear eigenvalue
problem known as the Hartree-Fock-Roothaan problem. The discretization technique
uses plane wave basis or localized basis functions, with compact support [5] or with
a Gaussian fall-off [3]. In this way, the unknowns of the problem are represented by a
coefficient matrix C ∈ R

K×N . The optimal choice of the coefficients comes from the
solution of the optimization problem:

Minimize E(Z) (1)

subject to

Z = ZT , ZMZ = Z, Trace (ZM) = N (2)

where M is a symmetric positive definite overlapping matrix that depends on the
basis and Z = CCT is called the density matrix.

In the Restricted Closed-Shell Hartree-Fock-Roothaan problem, the form of E(Z)

in (1) is:

ESCF(Z) = Trace
[
2HZ + G(Z)Z

]
,
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where Z is the one-electron density matrix in the atomic-orbital (AO) basis, H is the
one-electron Hamiltonian matrix, G(Z) is given by

Gij (Z) =
K∑

k=1

K∑

�=1

(2gijk� − gi�kj )Z�k,

gijk� is a two-electron integral in the AO basis, K is the number of functions in
the basis and 2N is the number of electrons. Generally, 2N ≤ K ≤ 10N . For all
i, j, k, � = 1, . . . ,K one has:

gijk� = gjik� = gij�k = gk�ij .

The matrix F(Z) given by F(Z) = H + G(Z) is known as Fock matrix and we
have:

∇ESCF(Z) = 2F(Z).

Since G(Z) is linear, the objective function ESCF(Z) is quadratic.
Defining X = M1/2ZM1/2, and f (X) = E(M−1/2XM−1/2) problem (1)–(2)

becomes:

Minimize f (X) (3)

subject to

X = XT , XX = X, Trace (X) = N. (4)

It is easy to see that:

• The feasible points (matrices) of (3)–(4) are orthogonal projection K ×K matrices
on subspaces of dimension N .

• Every feasible X may be written X = CCT , where C has K rows and N orthonor-
mal columns which form a basis of R(X), the column-space of X.

• Every feasible X satisfies ‖X‖2
F = N .

We may always consider that ∇f (X) is a symmetric K × K matrix. In fact, for
all X in the feasible set, we have that f (X) = f ((X + XT )/2). Therefore, if ∇f (X)

is not symmetric, we may replace f (X) by f ((X + XT )/2) without changing the
optimization problem.

A fixed point iteration is frequently used to solve (3)–(4). The iteration function
� is defined as follows: Given a symmetric X ∈ R

K×K , one defines

�(X) = CCT , (5)

where the columns of C ∈ R
K×N are orthonormal eigenvectors corresponding to the

N smallest eigenvalues of ∇f (X). Note that, strictly speaking, � is a multivalued
function due to possible coincidence between the N -th and the (N + 1)-th smallest
eigenvalues.

It can be proved that, for all feasible Xk , �(Xk) is a solution of:

Minimize 〈∇f (Xk),X − Xk〉 subject to (4). (6)
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(In (6) 〈A,B〉 denotes the standard scalar product 〈A,B〉 = Trace(AT B).) The clas-
sical fixed-point SCF iteration for solving (3)–(4) is given by Xk+1 = �(Xk). If Xk

is a solution of (6), the point Xk is said to be “Aufbau”. Since the objective function
of problem (6) has the same gradient as the one of problem (3) and the constraints
of both problems are the same, it turns out that any Aufbau point is a first-order
stationary point of (3)–(4).

However, global minimizers of (3)–(4) are not necessarily Aufbau, as the follow-
ing counter-example shows:

Let K = 2, N = 1. Define

f (X) = 2(x11 − 1/2)2 + [(x12 + x21)/2]2.

A global minimizer of this problem is:

X∗ =
(

1/2 −1/2
−1/2 1/2

)
.

Now:

∇f (X∗) =
(

0 −1/2
−1/2 0

)
.

The eigenvalues of ∇f (X∗) are λmin = −1/2 and λmax = 1/2, corresponding to the
eigenvectors vmin = (1/

√
2,1/

√
2)T and vmax = (1/

√
2,−1/

√
2)T respectively.

However,

vminv
T
min =

(
1/2 1/2
1/2 1/2

)
�= X∗.

Therefore, X∗ is not Aufbau. (In fact, X∗ = vmaxv
T
max , where vmax is the eigen-

vector corresponding to the biggest eigenvalue.)
The fact that all the global minimizers are not necessarily Aufbau is known in sev-

eral problems of computational chemistry. In several cases, depending of the function
f , it has been proved that global minimizers are Aufbau, but the problem seems to
be open in other important cases. See, for example, [1], pp. 89–90.

The best-known algorithms for solving electronic structure problems are based
on the fixed-point SCF iteration [2]. A popular variation consists of accelerating the
sequence defined by Xk+1 = �(Xk) by means of the DIIS (Direct Inversion Iterative
Subspace) extrapolation procedure [6]. At each iteration, DIIS computes the point
X̄k in the affine subspace determined by {Xk, . . . ,Xk−q} that minimizes an error
in the least-squares sense and defines Xk+1 = �(X̄k). Sequences generated by the
SCF iteration or by its accelerated DIIS counterpart do not converge necessarily to
minimizers of the problem. However, the SCF-DIIS algorithm is very successful in
many problems and its employment is widely extended in practical calculations. The
Optimal Damping Algorithm (ODA) [7] and the trust-region methods given in [8, 9]
can be proved to be convergent, under different assumptions, to stationary points of
(3)–(4). Other methods that incorporate trust-region concepts were given in [10, 11].

The methods mentioned above employ eigenvalue calculations for computing the
SCF iteration or for solving the trust-region subproblems. When K,N are very large,
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solving eigenvalue problems may be very expensive and, thus, efficient “eigen-free”
methods are demanded. Moreover, possible sparse structure of the problem should be
preserved.

In this paper we develop an Inexact Restoration algorithm [12–18] for solving
(3)–(4) which, potentially, satisfies the requirements above.

The idea of the IR algorithm for solving (3)–(4) is the following. Given a feasible
iterate Yk we consider the tangent affine subspace to the constraints and we minimize
(approximately) a Lagrangian approximation on that subspace. We will show that this
can be done without matrix transformations using an adaptation of the Conjugate Gra-
dient method. In this optimality phase we obtain a (not feasible) point Xk+1. A new
feasible point Yk+1 is then obtained using a Newtonian iteration that guaranteedly
converges to the closest feasible point to Xk+1. This is the basic “local” form of the
method, which essentially corresponds to the IR description of Birgin and Martínez
[13] that provides local quadratic convergence. Here we consider the modification
introduced by Fischer and Friedlander [14] by means of which the method converges
to KKT stationary points.

This paper is organized as follows:

• Section 2: We describe the IR method, in the versions [13] and [14].
• Section 3: We prove essential properties of the matricial optimization problem (3)–

(4).
• Section 4: We describe the application of IR to (3)–(4).
• Section 5: We show how the method described in Sect. 4 may be implemented

without eigenvalue calculations.
• Section 6: We show how to compute suitable approximations to the Lagrange mul-

tipliers at each iteration.
• Section 7: We describe a computer implementation of the method.
• Section 8: We show numerical experiments using a large set of mathematical test

problems, with a comparison against classical methods.
• Section 9: We show numerical experiments with actual electronic structure calcu-

lations.
• Section 10: Conclusions and lines for future research.

Notation

• N = {0,1,2, . . .}.
• The symbol ‖ · ‖ denotes the Euclidean norm on R

n. (Many times, it may be re-
placed by an arbitrary norm.)

• ‖A‖F is the Frobenius norm of a matrix A.
• PD(x) is the Euclidean projection of x onto the convex set D. When we talk about

projections we always mean Euclidean projections. In the case of matrices, this
means projections with respect to the Frobenius norm.

• For all X ∈ R
K×K , x = vec(X) denotes the vector of R

K2
that results from dis-

playing the entries of X columnwise.
• If h : R

n → R
m we denote ∇h(x) = (∇h1(x), . . . ,∇hm(x)) ∈ R

n×m.
• The column-space of a matrix X will be denoted R(X).
• Diag(σ1, . . . , σn) will be the diagonal matrix with entries σ1, . . . , σn.
• If A and B are square matrices, we denote 〈A,B〉 = Trace (ABT ).
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2 Inexact restoration method

In this section we describe the Inexact Restoration method (IR) that will be used
in our main application. We will use the approach of Fischer and Friedlander [14],
which consists of a simplified variation of the method introduced by Martínez [17],
with improved global convergence properties.

Let � be a convex and closed polytope. Let f : R
n → R, h : R

n → R
m be differ-

entiable and assume that ∇f and ∇h are Lipschitz-continuous on �.
The Inexact Restoration method described in this section aims the solution of the

nonlinear programming problem:

Minimize f (x) subject to h(x) = 0, x ∈ �. (7)

For all x ∈ �,λ ∈ R
m we define the Lagrangian:

L(x,λ) = f (x) + h(x)T λ. (8)

We say that (x̄, λ̄) ∈ � × R
m is a critical pair of the optimization problem (7) if

h(x̄) = 0 (9)

and

P�(x̄ − ∇L(x̄, λ̄)) − x̄ = 0.

If (x̄, λ̄) is a critical pair, we say that x̄ is a Karush-Kuhn-Tucker (KKT) point. Local
minimizers of (7) that satisfy some “constraint qualification” necessarily satisfy the
KKT conditions [19].

We define, for all x ∈ �,θ ∈ [0,1], the following merit function:

�(x, θ) = θf (x) + (1 − θ)‖h(x)‖. (10)

For all y ∈ R
n we define the tangent set:

T (y) = {z ∈ �|∇h(y)T (z − y) = 0}. (11)

Algorithm 2.1 Inexact Restoration
The algorithmic parameters are r ∈ [0,1), β > 0, γ > 0, τ > 0. We assume that

rk ∈ [0, r] for all k ∈ N.

Step 0. Initialization
As initial approximation we choose, arbitrarily, x0 ∈ �. We initialize θ−1 ∈ (0,1)

and k ← 0.

Step 1. Restoration step
Compute yk ∈ � such that:

‖h(yk)‖ ≤ rk‖h(xk)‖ (12)
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and

‖yk − xk‖ ≤ β‖h(xk)‖. (13)

Step 2. Penalty parameter
Compute θk as the first element θ of the sequence {θk−1/2j }j∈N such that

�(yk, θ) ≤ �(xk, θ) + 1

2
(‖h(yk)‖ − ‖h(xk)‖). (14)

Step 3. Tangent descent direction
Compute dk ∈ R

n such that yk + dk ∈ �,

f (yk + tdk) ≤ f (yk) − γ t‖dk‖2 (15)

for all t ∈ [0, τ ] and

∇h(yk)T dk = 0. (16)

Step 4. Acceptance of the step
Compute tk as the first element t of the sequence {1,1/2,1/4, . . .} such that

�(yk + tdk, θk) ≤ �(xk, θk) + 1 − r

2
(‖h(yk)‖ − ‖h(xk)‖) (17)

and

f (yk + tkd
k) ≤ f (yk) − γ tk‖dk‖2.

Set xk+1 = xk + tkd
k , update k ← k + 1 and go to Step 1.

The “Restoration Phase” of an Inexact Restoration method is the process that leads
to find yk fulfilling the requirements of Step 1. Step 3 represents the “Optimality
Phase” of the IR iteration. The point zk ≡ yk + dk may be considered as an approxi-
mate minimizer on the tangent set of a suitable merit function associated to f , and dk

should be a direction along which f decreases. At Step 4 one accepts or rejects trial
points, according to a merit function whose penalty parameter is computed at Step 2.

In [14] the following theorem has been proved.

Theorem 2.1 Suppose that, for all k ∈ N, Steps 1 and 3 of Algorithm 2.1 are well
defined. Then:

1. For all k ∈ N, the next iterate xk+1 is well defined.
2. There exists k0 ∈ N such that θk = θk0 for all k ≥ k0.
3. limk→∞ ‖h(xk)‖ = limk→∞ ‖h(yk)‖ = 0.
4. limk→∞ dk = 0.

Observe that, by (13) and the fact that ‖h(xk)‖ → 0, we have that ‖yk − xk‖ → 0
and, so, the sequences {xk} and {yk} have the same limit points. Clearly, if x∗ is a
limit point, as ‖h(xk)‖ → 0, we have that h(x∗) = 0. Since � is closed this implies
that x∗ is feasible. The optimality of the limit points of sequences computed by Algo-
rithm 2.1 is related to the fact that dk → 0. If the directions dk are properly chosen,
the fact that dk tends to zero implies the Approximate Gradient Projection (AGP)
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first-order necessary condition defined by Martínez and Svaiter [20]. If a constraint
qualification holds at the limit point, the KKT conditions are also fulfilled.

Theorem 2.2 below is a direct consequence of Theorems 2.3, 2.4 and 2.5 of [13].
It says that, under certain conditions, the Inexact Restoration algorithm produces su-
perlinearly or even quadratically convergent sequences.

Theorem 2.2 Suppose, as in Theorem 2.1, that Steps 1 and 3 of Algorithm 2.1 are
well defined for all k ∈ N. Assume that there exist c > 0, η ∈ [0,1) such that for all
k ∈ N there exist λk ∈ R

m, ηk ∈ [0, η] such that

‖P�(yk + dk −∇L(yk + dk,λk+1))− (yk + dk)‖ ≤ ηk‖P�(yk −∇L(yk,λk))− yk‖
(18)

and

‖dk‖ + ‖λk+1 − λk‖ ≤ c‖P�(yk − ∇L(yk,λk)) − yk‖. (19)

Assume, finally, that (x̄, λ̄) is a stationary pair and that tk = 1 for k large enough.
Then, there exist δ, ε > 0 such that:

• If, for some k0 ∈ N, ‖xk0 − x̄‖ ≤ ε and ‖λk0 − λ̄‖ ≤ δ, the sequence (xk, λk) con-
verges to some stationary pair.

• If rk and ηk tend to zero, the convergence is R-superlinear.
• If r = η = 0 the convergence is R-quadratic.

The assumptions of Theorem 2.2 deserve some comments. Assumption (18)
says that yk + dk is computed as an approximate minimizer of the Lagrangian
L(yk + d,λk) on the tangent set. This is a reasonable requirement if one wants fast
local convergence. Assumption (19) is a stability assumption that says that the solu-
tion of the optimality phase does not blow up. The more serious hypothesis of The-
orem 2.2 is that, asymptotically, the condition (17) should be satisfied taking tk = 1.
We do not have a theoretical sufficient condition for this requirement, although we
observed that it holds in many numerical tests.

3 Matricial optimization problem

Let f : R
K×K → R, N ∈ {1, . . . ,K}. Assume that f admits continuous first deriva-

tives for all X ∈ R
K×K . The optimization problem addressed in this section is

Minimize f (X) subject to X ∈ G, (20)

where

G = {X ∈ R
K×K |X = XT ,X2 = X, Trace (X) = N}. (21)

We consider that (20) is a particular case of (7), with n = K2 and the obvious iden-
tifications of the constraints defined by (21) with the constraints h(x) = 0. We note
that the number of constraints of (20) is bigger than the number of variables of the
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problem. Therefore, the number of gradients of constraints exceeds the dimension of
the space. As a consequence, the gradients of constraints are linearly dependent and,
so, the Linear Independence Constraint Qualification does not hold. Moreover, these
constraints fail to satisfy even the Constant Rank Constraint Qualification (CRCQ)
introduced in [21]. This condition says that, when some gradients of active constraints
are linearly dependent at a feasible point, the same gradients must be linearly depen-
dent in a neighborhood of that point. Taking X0 = ( 1 0

0 0

)
, we observe that the gradient

of the constraint x11x12 +x12x22 −x12 = 0 vanishes at X0 but it is different from zero
at Xε = ( 1 0

0 ε

)
for all ε > 0. Therefore, CRCQ does not hold at X0. Since (21) only in-

volves equality constraints it turns out that the Constant Positive Linear Dependence
constraint qualification [22, 23] is not fulfilled either. This state of facts makes it nec-
essary to employ specific techniques to prove that local minimizers satisfy the KKT
conditions.

Since the feasible set of (20) is the set of Euclidean projection matrices onto
N -dimensional subspaces of R

K , each X ∈ G may be written in the form

X = CCT

where C ∈ R
K×N has orthonormal columns that form a basis of the N -dimensional

subspace R(X). Therefore, if X ∈ G , it has N eigenvalues equal to 1 and K − N

eigenvalues equal to 0. The set of matrices with orthonormal columns is obviously
compact, therefore, G is compact too. This implies that (20) admits a global min-
imizer. There exists a biunivoque correspondence between G and the Grassmann
manifold formed by the subspaces of dimension N of R

K . For each subspace S
there exists one and only one orthogonal projection matrix X such that R(X) = S .
Therefore, the feasible set of (20) may be identified with the Grassmann manifold
defined by K and N .

Problem (20) has no inequality constraints. Therefore, for all Y ∈ R
K×K , the set

T (Y ) defined by (11) is an affine subspace. The parallel subspace to T (Y ) will be
called S(Y ). Since there are no inequality constraints, the KKT conditions coincide
with the classical Lagrange optimality conditions. These conditions are satisfied at a
feasible point Y∗ if ∇f (Y∗) is a linear combination of the gradients of the constraints
evaluated at Y∗. In other words, the KKT conditions say that ∇f (Y∗) is orthogonal
to S(Y∗).

When (20) comes from an electronic structure calculation the number of variables
and constraints of (20) may be very large. In this case, N is of the order of the number
of electrons of the system and the best known methods use variations of the SCF
fixed point iteration, which involve computing N eigenvalues and eigenvectors of
a symmetric K × K matrix [2, 4]. The challenge is to develop methods that scale
linearly with respect to N , preserving possible sparsity of X and ∇f (X) and being
efficient in the absence of gap between eigenvalues N and N + 1 of ∇f (X) [24–27].

Most algorithms for solving (20) are based on the SCF fixed point iteration. Given
Xk ∈ G , the point Xk+1 is defined as a solution of

Minimize Trace [∇f (Xk)(X − Xk)] subject to X ∈ G. (22)

Therefore, in (22) one minimizes the linear approximation of f (X) around Xk

on the true feasible set. A solution of (22) is given by Xk+1 = CCT where CT C =
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IN×N and the columns of C form an orthonormal basis of the subspace associated to
the N smallest eigenvalues of ∇f (Xk). Thus, in principle, solving (22) requires an
eigenvalue calculation. Several efforts have been done in order to reduce the cost of
the fixed point iteration.

Our proposal here is to solve (20) using Algorithm 2.1. The iterates will be denoted
Xk (therefore, xk = vec(Xk)). The intermediate points yk will be defined by yk =
vec(Yk) and the Euclidean norm in R

n corresponds to the Frobenius norm of R
K×K .

The plausibility of using Algorithm 2.1 for solving (20) comes from a sequence
of theoretical results given below.

The first result is a characterization of the sets T (Y ) and S(Y ) for the case in which
Y ∈ G . We will prove that, if Trace (Y ) = N , the linearization of the constraints
X2 − X = 0 automatically implies that the constraint Trace (X) = N is preserved.
Moreover, in spite of the number of variables and equations, the dimension of S(Y )

is equal to N(K − N) for all Y ∈ G .

Lemma 3.1 Assume that Y ∈ G . Then,

S(Y ) = {E ∈ R
K×K |E = ET and YE + EY − E = 0} (23)

and

T (Y ) = {Z ∈ R
K×K |Z = ZT and Y(Z − Y) + (Z − Y)Y − (Z − Y) = 0}. (24)

Moreover, the dimension of S(Y ) is N(K − N).

Proof See Lemma 4.1 of [28]. �

The following lemma gives a closed formula for the projection of an arbitrary
symmetric matrix on the linearization of the constraints. By this formula, we see that
when A and Y have an adequate sparsity pattern, the projected matrix on S(Y ) tends
to be sparse too.

Lemma 3.2 Assume that Y ∈ G . Let A be a symmetric K × K matrix. Then, the
Euclidean (Frobenius) projection of A onto S(Y ) is given by:

PS(Y )(A) = YA + AY − 2YAY. (25)

Consequently, the projection of a symmetric matrix B ∈ R
K×K onto T (Y ) is given

by:

PT (Y )(B) = Y + Y(B − Y) + (B − Y)Y − 2Y(B − Y)Y. (26)

Proof By Lemma 3.1, the projection PS(Y )(A) is the solution of the following opti-
mization problem:

Minimize ‖A − E‖2
F subject to YE + EY − E = 0,E = ET . (27)
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Writing, as in Lemma 3.1, Y = QDQT (QQT = I , D diagonal) and E′ =
QT EQ, using elementary properties of the Frobenius norm and a simple manipu-
lation of the constraints, we see that (27) is equivalent to

Minimize ‖G − E′‖2
F subject to DE′ + E′D − E′ = 0,E′ = (E′)T , (28)

with G = (gij ) = QT AQ. We assume again, without loss of generality, that D is the
diagonal matrix with dii = 1 if i ≤ N and dii = 0 if i > N . As in Lemma 3.1, it turns
out that the feasible matrices of (28) have the form:

E′ =
(

0 RT

R 0

)
, (29)

where R ∈ R
(K−N)×N . Therefore, the solution of (28) is E′ = (e′

ij ), where

e′
ij = 0 if (i ≤ N,j ≤ N) or (i > Nj > N)

and

e′
ij = (gij )

otherwise.
Thus, by direct calculation it turns out that the solution E′∗ of (28) is

E′∗ = DG + GD − 2DGD

and the solution of (27) is E∗ = QE′∗QT . Now,

QE′∗QT = (QDQT )(QGQT ) + (QGQT )(QDQT )

− 2(QDQT )(QGQT )(QDQT )

= YA + AY − 2YAY.

Therefore, (25) is proved. The statement (26) is a direct consequence of (25). �

In the following lemma we show that the eigenvalues of the matrices lying on
T (Y ) are well separated. In fact, N of these eigenvalues are greater than or equal to 1
and the remaining K −N eigenvalues are nonpositive. This property will make it easy
the process of computing a feasible point in the context of the Inexact Restoration
algorithm.

Lemma 3.3 Let Y ∈ G and B ∈ T (Y ) (with K ≥ 2N ). Then, the eigenvalues of B

are given by

{−εN,−εN−1, . . . ,−ε1,0, . . . ,0︸ ︷︷ ︸
K−2N

,1 + ε1,1 + ε2, . . . ,1 + εN }, (30)

where εi ≥ 0, for all i = 1, . . . ,N .
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Proof As in (29), we have that the eigenvalues of B ∈ T (Y ) are the eigenvalues of
the matrix W = (

I RT

R 0

)
, for some matrix R ∈ R

(K−N)×N . Let ζ1, ζ2, . . . , ζN be the

singular values of R (in nondecreasing order). So, ζ 2
1 , . . . , ζ 2

N are the eigenvalues of
RT R. Let λ be an eigenvalue of W . Since ζ 2

i ≥ 0, for all i = 1, . . . ,N there exists
εi ≥ 0 such that ζ 2

i = εi + ε2
i . Then, if v = [vT

1 , vT
2 ]T is the eigenvector associated

to λ, we have that RT v2 = (λ − 1)v1 and Rv1 = λv2. Thus,

λ(λ − 1) = ζ 2
i = εi + ε2

i ,

for some i ∈ {1, . . . ,N}. So,

λ = 1 + εi or λ = −εi .

Therefore, for every singular value ζi we have two eigenvalues of B: λi1 = 1+ εi and
λi2 = −εi . Since the dimension of the null-space of B is the same as the dimension
of the null-space of RT , the desired result follows. �

Observe that if N ≤ K < 2N in Lemma 3.3, the result follows in the same way,
changing (30) by

{−εK−N, . . . ,−ε1,1, . . . ,1︸ ︷︷ ︸
2N−K

,1 + ε1, . . . ,1 + εK−N }, (31)

where εi ≥ 0, for all i ∈ {1, . . . ,K − N}.

Theorem 3.1 Let Y∗ ∈ G . Assume that Y∗ = C∗CT∗ , where C∗ ∈ R
K×N has ortho-

normal columns. The following statements are equivalent:

1. Y∗ satisfies the KKT conditions of problem (20).
2. Y∗∇f (Y∗) + ∇f (Y∗)Y∗ − 2Y∗∇f (Y∗)Y∗ = 0.
3. Y∗∇f (Y∗) = Y∗∇f (Y∗)Y∗.
4. ∇f (Y∗)Y∗ = Y∗∇f (Y∗)Y∗.
5. Y∗∇f (Y∗) − ∇f (Y∗)Y∗ = 0.
6. ∇f (Y∗)C∗ = C∗H for some H ∈ R

N×N symmetric.
7. C∗ satisfies the KKT conditions of the problem

Minimize f (CCT ) subject to CT C = I. (32)

8. Y∗∇f (Y∗) is symmetric.

Proof Statement 1 is equivalent to Statement 2 since the latter says that the projec-
tion of ∇f (Y∗) onto the tangent subspace S(Y ) is null. Moreover, Statement 3 is
obviously equivalent to Statement 4.

Now, assume that Statement 2 holds. Post-multiplying by Y∗ and using that
Y∗Y∗ = Y∗, we obtain:

Y∗∇f (Y∗)Y∗ + ∇f (Y∗)Y∗ − 2Y∗∇f (Y∗)Y∗ = 0.
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Therefore, Statement 3 holds. Statement 3 and Statement 4 obviously imply State-
ment 5.

Pre-multiplying Statement 5 by Y∗ we obtain Statement 3.
Therefore, Statements 3, 4 and 5 are equivalent.
Now, adding Statements 3 and 4 we obtain Statement 2. So, the first 5 statements

are equivalent.
Let us prove that Statement 5 implies Statement 6. By Statement 5,

∇f (Y∗)C∗CT∗ = C∗CT∗ ∇f (Y∗).

Post-multiplying by C∗ we get:

∇f (Y∗)C∗ = C∗CT∗ ∇f (Y∗)C∗.

Therefore, Statement 6 follows taking H = CT∗ ∇f (Y∗)C∗, which is symmetric.
Reciprocally, assume that Statement 6 holds. Then,

∇f (Y∗)C∗ = C∗H.

Pre-multiplying by CT∗ we get:

CT∗ ∇f (Y∗)C∗ = H.

Therefore, by Statement 6,

∇f (Y∗)C∗ = C∗CT∗ ∇f (Y∗)C∗ = Y∗∇f (Y∗)C∗.

Post-multiplying by CT∗ we obtain:

∇f (Y∗)Y∗ = Y∗∇f (Y∗)Y∗.

This is Statement 4.
Statement 6 is equivalent to say that the KKT conditions of (32) holds.
Finally, Statement 8 is obviously equivalent to Statement 5. This completes the

proof. �

As we showed before, the number of constraints of (20) is larger than the number
of variables and standard constraint qualifications do not hold. Therefore, the fact that
local minimizers are KKT points is not guaranteed by classical optimization theory
and, so, this fact needs a specific proof. The proof is given in the following theorem.

Theorem 3.2 Assume that Y∗ is a local minimizer of (20). Then, Y∗ satisfies the KKT
conditions of this problem.

Proof Since Y∗ is a local minimizer of (20), there exists ε > 0 such that f (Y ) ≥
f (Y∗) for all feasible Y such that ‖Y − Y∗‖ ≤ ε. Assume that Y∗ = C∗CT∗ , where
C∗ ∈ R

K×N and CT∗ C∗ = I . By continuity, there exists δ > 0 such that, for all C ∈
R

K×N such that ‖C − C∗‖ ≤ δ, one has ‖CCT − Y∗‖ ≤ ε. Therefore, C∗ is a local
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minimizer of (32). Since the gradients of the constraints of (32) satisfy the constant-
rank constraint qualification [21], C∗ must be a KKT point of (32). By Theorem 3.1,
Y∗ is a KKT point of (20). �

In the context of the Inexact Restoration method we will need to project a matrix
belonging to T (Yk) onto the feasible set G . Below we give an explicit formula for
this projection and we prove that, using this formula, the bound (13) holds with β = 1.

Proposition 3.1 Let Z ∈ R
K×K , Z = ZT . Assume that Z = Q�QT where QT Q =

QQT = I , and � is diagonal with elements in non-increasing order σ1, . . . , σK .
Define

S̄ = Diag(1, . . . ,1︸ ︷︷ ︸
N

,0, . . . ,0︸ ︷︷ ︸
K−N

).

Then, QS̄QT is a solution of

Minimize ‖X − Z‖F subject to XX − X = 0,X = XT , Trace (X) = N. (33)

Conversely, every solution of (33) has the form QS̄QT if Q and � are such that
Z = Q�QT , QQT = I and � = Diag(σ1, . . . , σK) with σ1 ≥ · · · ≥ σK .

Proof See [1], pp. 90–91. �

Theorem 3.3 Assume that Y ∈ G , Z ∈ T (Y ) and X is a solution of (33). Then,

‖X − Z‖F ≤ ‖ZZ − Z‖F . (34)

Proof Since ‖QT AQ‖F = ‖A‖F whenever Q ∈ R
K×K is orthogonal, we may re-

strict ourselves to the case in which Z is diagonal. By Lemma 3.3, without loss of
generality, we may write

Z = Diag(σ1, . . . , σN ,σN+1, . . . , σK),

where σi ≥ 1 for all i = 1, . . . ,N and σi ≤ 0 otherwise. Then, by Proposition 3.1, the
solution X is given by:

X = Diag(1, . . . ,1︸ ︷︷ ︸
N

,0, . . . ,0︸ ︷︷ ︸
K−N

).

Therefore:

‖X − Z‖2
F = (σ1 − 1)2 + · · · + (σN − 1)2 + σ 2

N+1 + · · · + σ 2
K (35)

and

‖ZZ−Z‖2
F = (σ 2

1 −σ1)
2 +· · ·+ (σ 2

N −σN)2 + (σ 2
N+1 −σN+1)

2 +· · ·+ (σ 2
K −σK)2.

(36)
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Now, if i ≤ N , since σi ≥ 1 we have:

|σi − 1| ≤ σi |σi − 1|,
then,

(σi − 1)2 ≤ (σ 2
i − σi)

2. (37)

If i > N , since σi ≤ 0, we have:

|σi | ≤ |σi ||σi − 1|.
Therefore,

σ 2
i ≤ (σ 2

i − σi)
2. (38)

By (35), (36), (37) and (38) we have that

‖X − Z‖F ≤ ‖ZZ − Z‖F .

This completes the proof. �

4 Inexact Restoration method for the matricial problem

The results of Sect. 3 allow us to define a suitable IR method for solving (20). The
projection formula given by Lemma 3.2 makes it possible to minimize the Lagrangian
in the tangent set using a reduced conjugate-gradient approach. The idea is the follow-
ing: For computing the tangent direction dk at Step 3 of Algorithm 2.1, we proceed
minimizing the Lagrangian subject to the condition

∇h(yk)T d = 0.

Suppose, for a moment, that the columns of the matrix Z form an orthonormal ba-
sis of the null-space of ∇h(yk)T . Then, the minimization of the Lagrangian reduces
to the unconstrained minimization of a function whose variables are the coefficients
of d with respect to the basis Z. The conjugate-gradient method may be applied to
this problem, but the drawback is that the computation of Z involves an unaffordable
factorization of the matrix ∇h(yk)T . Fortunately, the availability of the projection
formula (25) allows us to apply the conjugate gradient method for the tangent sub-
problem without explicit knowledge of the basis Z. In fact, it can be easily verified
that, if one applies formally the CG method in the variables d , replacing gradients
by projected gradients, one obtains exactly the iterates produced by the same method
when the variables are the coefficients on the basis Z.

In the context of problem (20) we define:

� = {X ∈ R
K×K |X = XT , Trace (X) = N}.

As in (8), we define the Lagrangian L(X,�) by:

L(X,�) = f (X) + 〈X2 − X,�〉
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for all X ∈ �,� ∈ R
K×K .

Therefore,

∇XL(X,�) = ∇f (X) + X� + �X − �. (39)

A critical pair (X̄, �̄) ∈ � × R
K×K for problem (20) is defined by

X̄2 − X̄ = 0

and

P�(X̄ − ∇XL(X̄, �̄)) − X̄ = 0. (40)

Since � is an affine subspace in this case, condition (40) is equivalent to:

PS0(∇XL(X̄, �̄)) = 0,

where

S0 = {X ∈ R
K×K |X = XT , Trace (X) = 0}.

Algorithm 4.1 Inexact Restoration for solving (20)

Step 0. Initialization
The algorithmic parameters are γ, τ,μ > 0. As initial approximation we choose a

symmetric matrix X0 ∈ R
K×K such that Trace (X0) = N . We initialize θ−1 ∈ (0,1)

and k ← 0.

Step 1. Restoration step
Compute Yk ∈ G as a solution of

Minimize ‖Xk − Y‖F subject to Y ∈ G. (41)

Step 2. Penalty parameter
Compute θk as the first element θ of the sequence {θk−1/2j }j∈N such that

θf (Yk) ≤ θf (Xk) +
(

1 − θ − 1

2

)
‖X2

k − Xk‖F . (42)

Step 3. Tangent descent direction
Compute Ek ∈ S(Yk) such that

f (Yk + tEk) ≤ f (Yk) − γ t‖Ek‖2
F (43)

for all t ∈ [0, τ ] and

‖Ek‖F ≥ μ‖PS(Yk)(∇f (Yk))‖F . (44)

Step 4. Acceptance of the step
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Compute tk as the first element t of the sequence {1,1/2,1/4, . . .} such that

θkf (Yk + tEk) + (1 − θk)‖(Yk + tEk)
2 − (Yk + tEk)‖F

≤ θkf (Xk) + (1 − θk)‖X2
k − Xk‖F − 1

2
‖X2

k − Xk‖F (45)

and

f (Yk + tkEk) ≤ f (Yk) − γ tk‖Ek‖2
F .

Set Xk+1 = Xk + tkEk , update k ← k + 1 and go to Step 1.

Remarks Algorithm 4.1 is a particular case of Algorithm 2.1, with the substitutions
xk = vec(Xk), y

k = vec(Yk), d
k = vec(Ek). In fact, by (41) and Theorem 3.3, condi-

tions (12) and (13) hold with rk = 0 and β = 1 for all k ∈ N. Condition (14) follows
straightforwardly from (42). Moreover, (15) corresponds to (43) and Ek ∈ S(Yk) im-
plies that (16) also holds. Finally, the requirement (45) is equivalent to (17). These
equivalences allow us to prove global convergence in Theorem 4.1.

The only assumption of Theorem 4.1 is that Step 3 of Algorithm 4.1 is well de-
fined. This condition is satisfied, for example, if one chooses Ek = −PS(Yk)(∇f (Yk)).
We aim to use more sophisticated search directions, so, as we will see later, we com-
pute an alternative matrix Ek first and we test the conditions (43) and (44). If at least
one of these conditions is not satisfied we rely on the projected gradient choice.

Theorem 4.1 Assume that, for all k ∈ N, Step 3 of Algorithm 4.1 is well defined.
Then:

1. For all k ∈ N, the iterate Xk+1 is well defined.
2. There exists k0 ∈ N such that θk = θk0 for all k ≥ k0.
3. limk→∞ ‖X2

k − Xk‖ = limk→∞ ‖Y 2
k − Yk‖ = 0.

4. limk→∞ ‖Ek‖ = 0.

5. Every limit point of {Xk} is a KKT point of (20).

Proof By Theorem 2.1, due to the equivalence between Algorithms 2.1 and 4.1, we
only need to prove that every limit point of {Xk} is a KKT point of (20). Recall that
the sequences {Xk} and {Yk} admit the same limit points. Let Y∗ be a limit point.
Since ‖X2

k − Xk‖ → 0 we have that Y∗ ∈ G . By (44), since ‖Ek‖ → 0 we have that

lim
k→∞‖PS(Yk)(∇f (Yk))‖F = 0.

Therefore, by Lemma 3.2,

lim
k→∞Yk∇f (Yk) + ∇f (Yk)Yk − 2Yk∇f (Yk)Yk = 0.

Thus, by the continuity of ∇f ,

Y∗∇f (Y∗) + ∇f (Y∗)Y∗ − 2Y∗∇f (Y∗)Y∗ = 0.

Then, by Theorem 3.1, Y∗ is a KKT point of (20). This completes the proof. �
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The following theorem, which follows from Theorem 2.2, is a local convergence
result that states that, ultimately, the convergence is superlinear or even quadratic.
Quadratic convergence takes place if one solves exactly the tangent minimization
subproblems. Note that in the restoration step of Algorithm 4.1 we used “exact
restoration” (rk = 0). The reason for this is that the eigenvalue characterization of the
tangent subspace is crucial for the theoretical behavior of the algorithm and this char-
acterization holds if Yk is feasible. Due to the structure of the constraints, restoration
is simple, so that we can stop the restoration procedure guaranteeing high precision,
as we will see in the following section.

The hypotheses of Theorem 4.2 deserve some comments. Condition (46) essen-
tially says that our solution of the subproblem at Step 3 should be an approximate
minimizer of the Lagrangian, when this Lagrangian is a convex function on the tan-
gent subspace. This generally occurs in the vicinity of a local minimizer. Condition
(47) is a stability condition that generally holds close to local minimizers. Neither
(46) nor (47) can be theoretically guaranteed but both are plausible properties that
can be observed in practice.

As we mentioned after the statement of Theorem 2.2, the most serious hypothesis
is that, eventually, tk = 1. This means that inequality (45) should hold with t = 1
for k large enough. This property has been frequently observed in practice but its
plausibility is not so clear as in the case of the remaining assumptions of the theorem.
The possible lack of fulfillment of this assumption is related to a phenomenon known
as “Maratos effect” in constrained optimization [19]. The Maratos effect takes place
when the iterate that leads to high rates of convergence is not accepted by the merit
function that guarantees global convergence. Possible consequences of the Maratos
effect in our problem will be observed in Sect. 8.

Theorem 4.2 Suppose that Step 3 of Algorithm 4.1 is well defined for all k ∈ N.
Assume that there exist c > 0, η ∈ [0,1) such that for all k ∈ N there exist �k ∈
R

K×K , ηk ∈ [0, η] such that

‖PS0 [∇L(Yk + Ek,�k+1)]‖F ≤ ηk‖PS0 [∇L(Yk,�k)]‖F (46)

and

‖Ek‖F + ‖�k+1 − �k‖F ≤ c‖PS0 [∇L(Yk,�k)]‖F . (47)

Assume, finally, that (X̄, �̄) is a stationary pair and that tk = 1 for k large enough.
Then, there exist δ, ε > 0 such that:

• If, for some k0 ∈ N, ‖Xk0 − X̄‖F ≤ ε and ‖�k0 − �̄‖F ≤ δ, the sequence (Xk,�k)

converges to some stationary pair.
• If ηk tends to zero, the convergence is R-superlinear.
• If η = 0 the convergence is R-quadratic.

5 Restoration without diagonalization

Proposition 3.1 gives a characterization of the solution of the restoration problem
(41). Using this characterization one may obtain Yk at Step 1 of Algorithm 4.1 by
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means of the diagonalization of Xk . Alternative restoration procedures that do not
involve eigenvalue calculations are described in this section. Recall that, for k > 1
one has Xk ∈ T (Yk−1). Therefore, by Lemma 3.3, Xk has N eigenvalues greater than
or equal to 1 and K − N eigenvalues less than or equal to 0.

Given Xk ∈ T (Yk−1), an iterative procedure for computing Yk may be defined by
Y 0

k = Xk , and

Y
j+1
k = Y

j
k − (2Y

j
k − I )−1[(Y j

k )2 − Y
j
k ] (48)

for all j ∈ N.
Writing Y

j
k = QD

j
k QT (QQT = QT Q = I ) it is easy to see that (48) corresponds

to the application of Newton’s method to each eigenvalue of the matrix, for solving
the equation ϕ(di) ≡ d2

i − di = 0. Since Y 0
k ∈ T (Yk−1) we have that the iteration (48)

converges to the solution of Y 2 − Y = 0 which is closest to Xk .
From now on, let us write, for the sake of simplicity, x = di . If x ∈ {0,1} we see

that ϕ′(x) = 1/ϕ′(x). This identity suggests the use of the iteration

xj+1 = xj − ϕ′(xj )ϕ(xj ) (49)

instead of the usual Newton iteration, for solving x2 − x = 0. Clearly, (49) corre-
sponds to the matricial iteration

Y
j+1
k = Y

j
k − (2Y

j
k − I )[(Y j

k )2 − Y
j
k ]. (50)

Developing (49) and (50) we arrive to

xj+1 = 3x2
j − 2x3

j (51)

and

Y
j+1
k = 3(Y

j
k )2 − 2(Y

j
k )3, (52)

respectively.
The convergence properties of (52) can be directly deduced from the ones of (51),

which are the following:

1. If x0 ∈ [−1/2,3/2] the sequence {xj } is convergent. The possible limit points are
{0,1/2,1} and the convergence is quadratic [29]. If x0 /∈ [−1/2,3/2] the sequence
diverges.

2. If x0 ∈ [−1/2, 1−√
3

2 ) we have that xj tends to 0. If x0 ∈ ( 1+√
3

2 ,3/2], we have

that xj tends to 1. If x0 = 1−√
3

2 or x0 = 1+√
3

2 the sequence converges to 1/2 in
just one iteration.

3. The sequence also converges to 0 starting from x0 ∈ ( 1−√
3

2 ,1/2) ≈ (−0.366,0.5)

and converges to 1 starting from x0 ∈ (1/2, 1+√
3

2 ) ≈ (0.5,1.366).

A consequence of these properties for the iteration (52) is that Y
j
k converges

quadratically to the projection matrix that is closest to Y 0
k if N eigenvalues of Y 0

k

are in (1/2, 1+√
3

2 ) ≈ (0.5,1.366) and K −N eigenvalues of Y0 are in ( 1−√
3

2 ,1/2) ≈
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(−0.366,0.5). In any other case there are no chances that (52) converges to the cor-
rect projection.

Recall, from (30) and (31), that Xk ∈ T (Yk−1) has N eigenvalues greater than or
equal to 1 and K −N eigenvalues non-positive, guaranteeing always the convergence
of (48). However, since at every step of Newton iteration we have to solve a linear
system, it would be interesting to apply the iterative process (52) whenever possible.
The following result establishes a scheme which always allows us to apply (52) for
solving (41), regardless of the matrix Xk ∈ T (Yk−1).

Theorem 5.1 Let Yk−1 ∈ G , Xk ∈ T (Yk−1) and cbound be a strict upper bound of the
eigenvalues of Xk . Define

X̃k = 1

2cbound − 1

(
Xk + (cbound − 1)IK×K

)
. (53)

Then, the iterative process (52), starting with Y 0
k = X̃k , converges quadratically to

the solution of (41).

Proof From (30) and (31), we have that clower ≡ 1 − cbound is a strict lower bound
of the eigenvalues of Xk . Thus, defining

X̃k = 1

cbound − clower

(
Xk − (1 − cbound)IK×K

)
,

it follows that X̃k has N eigenvalues in (1/2,1] and K − N eigenvalues in [0,1/2).
Then, from the analysis above, related to (52), and taking into account that the eigen-
vectors of Xk and X̃k are the same, the desired result follows. �

The iteration (52) was introduced by Mc Weeny [30] and is generally known as
“purification” in the electronic structure literature (see, for example, [29, 31–33]).
Our contribution here is to show that, due to the eigenvalue structure of the tangent
subspace at Yk−1 (Lemma 3.3) this iterative process is not only locally quadratically
convergent but also globally convergent starting from any point of T (Yk−1), after the
transformation (53). This implies that the purification process may be safely used,
not only to refine an approximate solution when we know that we are close to an
exact one, but also as a routine restoration procedure starting from the previous tan-
gent subspace. Moreover, global convergence occurs to the closest point to Xk , which
guarantees that convergence requirements of the Inexact Restoration methods (con-
dition (13)) are fulfilled.

6 Estimation of the Lagrange multipliers

In the Inexact Restoration framework there are different implementation alternatives
for both the feasibility and the optimality phases. For decreasing the overall number
of iterations the best choice for the optimality phase is to (approximately) minimize
the Lagrangian of the problem on the tangent subspace. This requires to compute
suitable Lagrange multipliers estimates at every iteration.
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Let us assume that a set of Lagrange multipliers � ∈ R
K×K,� = �T , has been

computed.
Therefore, in the optimality phase of the IR method we need to minimize the

Lagrangian defined by

L(X,λ) = f (X) +
K∑

i,j=1

λij (X
2 − X)ij

on the affine subspace T (Y ). Observe that, in the case that f is quadratic (as in the
classical Hartree-Fock), the Lagrangian L is quadratic too and, so, the optimality
phase is a quadratic programming problem with equality constraints.

The gradient of L(X,�) is given by the following formula:

∂L

∂xij

= ∂f

∂xij

+
K∑

k=1

(λikxkj + xikλkj ) − λij .

Therefore,

∇XL(X,�) = ∇f (X) + X� + �X − �. (54)

Now let us address the problem of computing Lagrange multipliers estimators.
The reasoning is as follows. As it is well known, the purpose of using the Lagrangian
in the tangent subspace is that this function approximates the true objective function
on the true feasible set. Given X ∈ T (Y ), the value of the Lagrangian at X should
approximate the value of f at a feasible point that is close to X. Now, the most
straightforward approximation of a feasible point that is close to X is the Newtonian
iterate:

X̄ = X − (2X − I )−1(X2 − X).

The value of f at X̄ is, approximately, given by:

f (X̄) ≈ f (X) + 〈∇f (X), X̄ − X〉.
But, since Trace(AB) = Trace(BA),

〈∇f (X), X̄ − X〉 = 〈∇f (X),−(2X − I )−1(X2 − X)〉
= Trace[∇f (X)(−(2X − I )−1(X2 − X))T ]
= −Trace[∇f (X)(X2 − X)(2X − I )−1]
= −Trace[(2X − I )−1∇f (X)(X2 − X)]. (55)

On the other hand,

Trace[(2X − I )−1∇f (X)(X2 − X)] = Trace[((2X − I )−1∇f (X)(X2 − X))T ]
= Trace[(X2 − X)∇f (X)(2X − I )−1]
= Trace[∇f (X)(2X − I )−1(X2 − X)]. (56)
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By (55) and (56),

〈∇f (X), X̄ − X〉
= −Trace

[
(∇f (X)(2X − I )−1 + (2X − I )−1∇f (X))

2
(X2 − X)

]

= −Trace

[
(2X − I )−1∇f (X) + [(2X − I )−1∇f (X)]T

2
(X2 − X)

]

= −
〈
(2X − I )−1∇f (X) + [(2X − I )−1∇f (X)]T

2
, (X2 − X)

〉
.

Since we wish to compute the Lagrange multipliers approximation only once
along the optimality phase, we adopt the formula

� = − (2Y − I )−1∇f (Y ) + [(2Y − I )−1∇f (Y )]T
2

, (57)

where Y = Yk is the restored point at the k-th iteration of the IR process.
Moreover, it is trivial to see that, if Y 2 = Y we have that (2Y − I )−1 = 2Y − I .

This identity suggests that we may also use the approximation

� = − (2Y − I )∇f (Y ) + [(2Y − I )∇f (Y )]T
2

. (58)

7 Implementation

In this section we describe an implementation of Algorithm 4.1. For simplicity, we
restrict ourselves to the case in which f is quadratic, as in the Hartree-Fock case.

We chose θ−1 = 0.999. After the computation of Yk ∈ G at Step 1 of the algorithm,
we compute

Gk = Yk∇f (Yk) − ∇f (Yk)Yk.

If the maximal absolute value of the entries of Gk is smaller than or equal to 10−8 we
interrupt the execution declaring convergence. By Theorem 3.1, Yk is an approximate
KKT point.

7.1 Restoration

The restoration step (41) may be performed by means of (33), which involves an
eigenvalue calculation, or by means of the globally convergent Newton-like methods
described in Sect. 5. Algorithm 4.1 does not compute eigenvalues at all when the
Newton restoration procedure is adopted.

7.2 Computation of the tangent descent direction

For computing Ek at Step 3 of the algorithm we consider the subproblem

Minimize Qk(E) subject to E ∈ S(Yk), (59)
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where Qk(E) ≡ L(Yk + E,�k). (�k is computed using (58) with Y = Yk .) Tak-
ing an orthonormal basis of S(Yk) and expressing (59) in terms of the correspond-
ing internal coordinates, the problem (59) becomes unrestricted and we can consider
the Hestenes-Stiefel conjugate gradient method (CG) for its resolution. Fortunately,
we do not need to compute a basis for applying CG. In fact, we may employ, for-
mally, the CG method using gradient projections instead of the reduced-basis gra-
dients of Qk , obtaining exactly the same iterates. In this way, we get, in a finite
number of iterations, a solution of (59) or a nonpositive-curvature direction. If a
nonpositive-curvature direction E is computed at the first CG iteration we return
Ek = tE satisfying t ≥ 0 and ‖Yk + Ek‖2

F = 3N . (Recall that, for all X ∈ G , one has
‖X‖2

F = N .) Otherwise, we stop the CG procedure at the last iterate obtained before
finding nonpositive-curvature directions. In the vicinity of a local minimizer of (20),
the Lagrangian restricted to the tangent subspace is convex. In this case, the solution
of (59) is obtained in finitely many iterations.

Given the approximate solution of (59) so far obtained, we test the conditions (44)
(with μ = 10−6) and (43). Condition (43) is tested indirectly, since it obviously holds,
for some γ > 0, if (44) holds and Ek is a sufficient descent direction. Therefore,
instead of (43) we test

〈Ek,PS(Yk)(∇f (Yk))〉 ≤ −10−6‖Ek‖F ‖PS(Yk)(∇f (Yk))‖F . (60)

If both (43) and (44) are fulfilled, we accept the direction Ek . Otherwise, we re-
place Ek by the projection of −∇f (Yk) on S(Yk).

Note that the projection formula (25) is the main tool for the implementation of
the procedure described here.

8 Numerical experiments

8.1 Mathematical test problems

In order to test the reliability of Algorithm 4.1 we defined a set of mathematical test
problems. All the problems have the form (20) and different instances of them arise
according to specific parameters. Considering objective functions, instances, variable
dimensions and initial points we end up defining 1450 problems.

The constraints of all the test problems are the ones given in (20). Therefore,
different problems differ only in the objective function and the dimensions K and N .
For all the functions we assume that f (0) = 0.

Function 1 We define, for all X ∈ R
K×K , x = vec(X) ∈ R

n. We denote by A the
tridiagonal (−1,2,−1) n × n matrix and b = (−1,0, . . . ,0,−1)T .

We define:

Fvec(x) = bT x + 1

2
xT Ax, (61)

F(X) = Fvec(vec(X)) (62)
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and

f (X) = F

(
X + XT

2

)
. (63)

Function 2 This is a trivial problem with a linear objective function such that

∇f (X) = Diag(−1, . . . ,−1︸ ︷︷ ︸
N

,0, . . . ,0︸ ︷︷ ︸
K−N

).

The solution of (20) is

X = Diag(1, . . . ,1︸ ︷︷ ︸
N

,0, . . . ,0︸ ︷︷ ︸
K−N

).

Function 3 The objective function is linear and ∇f (X) is the tridiagonal (−1,2,−1)

K × K matrix T . The solution of this problem is the projection matrix on the sub-
space generated by the N smallest eigenvalues of the matrix T .

Function 4 The gradient of the linear objective function is the same as in Function 3,
except that the first N diagonal entries of ∇f (X) are −8.

Function 5 The gradient of the objective function of this problem is the one of Func-
tion 1, subtracting 10 from the first N diagonal entries. Therefore, denoting by f1 the
objective function of Function 1,

f (X) = f1(X) − 10
N∑

i=1

(X)ii .

Function 6 Define T as in Function 3. We define:

(∇f (X))ij = (T )ij

if i �= j and

(∇f (X))ii = 2(X)ii

for all i = 1, . . . ,K .

Function 7 This problem is defined by

(∇f (X))ij = (X)ij

i + j − 1
.

Function 8 The gradient of f is defined by:

aij =
∑

r,s

sin(i + j + r + s)(X)rs
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and

(∇f (X))ij = aij + aji

2
.

Function 9 In this problem we define A as the Hilbert n × n matrix (A)ij = 1/(i +
j − 1). The definition of f follows as in Function 1.

Function 10 We define, for i, j, r, s = 1, . . . ,K ,

aijrs = sin(i + j) + sin(r + s).

The objective function is given by:

f (X) = 1

2
Trace [2HX + G(X)X], (64)

where

(G(X))ij =
K∑

r=1

K∑

s=1

(2aijrs − aisrj )(X)sr , (65)

(H)ij = Hji = random between 0 and 2w (66)

and w is a parameter. Observe that ∇f (X) = H + G(X). Note that (64) and (65)
define the optimization problem in closed-shell restricted Hartree-Fock equations,
when X is the one-electron density matrix in the atomic-orbital basis, H is the one-
electron Hamiltonian matrix and aijrs is a two-electron integral in the AO basis [4].

Function 11 The differences between this function and Function 10 are:

• The matrix H is such that Hii = 0 for all i, and only the case w = 1 is considered.
• The function is evaluated in such a way that the computer time involved in this

problem is considerably cheaper than the one involved in Function 10.

Function 12 We define, for i, . . . ,2K ,

z(i) = 0 with probability p1. (67)

If z(i) �= 0 we define:

z(i) = random between a1 and b1. (68)

Moreover,

aijrs = z(i + j) + z(r + s). (69)

The definition of the objective function is completed as in (64), (65), (66).

Function 13 In this problem, instead of (69) we define:

aijrs = zi+j zr+s . (70)
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Function 14 Define z(i), for i = 1, . . . ,4K , as in (67)–(68). Define

aijrs = z(i + j + r + s)

and complete as in Function 12.

Function 15 For all i = 1, . . . ,2K , define

z(i) = tan(i)

and complete as in Function 12.

Function 16 Define z(i) as in Function 15 and complete as in Function 13.

Function 17 For all i = 1, . . . ,4K define z(i) = tan(i) and complete as in Func-
tion 14.

Function 18 Define z(i) = log10(i) and complete as in Function 12.

Function 19 Define z(i) = log10(i) and complete as in Function 13.

Function 20 Define z(i) = log10(i) and complete as in Function 14.

8.2 Performance profiles

The code that produced the experiments in this section was written in Fortran and
run in a computer with 2 processors Xeon E5462 Quad-Core 2.83 GHz, with 6 Mb
cache; 4 Gb Ram DDR2 800 ECC.

The subroutines that compute functions and gradients were parallelized us-
ing OpenMP. The code was compiled using the ifort compiler with the keys
“-O2 -openmp”.

For comparing different methods we use performance profiles [34]. Each method
M is represented by a curve y = M(x). For each abscissa x > 0, M(x) is the num-
ber of problems solved by the method in minimal time, where the “minimal” time
definition involves a tolerance given by x. A useful interpretation of the performance
profiles curves is that, roughly speaking, x represents (adimensional and problem-
independent) computer time and M(x) is the number of problems that would be
solved by Method M if only “x time units” were available. Clearly, performance pro-
file curves are always non-decreasing since the number of problems solved increase
with time availability.

The graphics presented here differ in the way a problem is considered to be solved
by a given method. One possibility is to establish that the method solved the problem
when a feasible Yk was found such that

max
i>j

|(Yk∇f (Yk))ij − (Yk∇f (Yk))ji | ≤ 10−8. (71)

By Theorem 3.1, the criterion (71) corresponds to the approximate fulfillment of
the KKT conditions of (20).
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Fig. 1 Performance profiles:
K = 50,N = 5 using (a)
stopping criterion (71) and
(b) minimum function value
found (fmin) criterion (72)

The second possibility involves computing, for each problem, the minimum value
fmin of the objective function obtained by any of the methods at feasible points and
to declare that a particular method solved the problem when a feasible Yk was found
that

f (Yk) ≤ fmin + |fmin|10−6. (72)

For different values of K and N we ran 1450 instances of the mathematical prob-
lems defined above. The instances correspond to 10 different random initial points
for 145 problems generated as follows:

1. The first 9 problems correspond to functions 1–9 described above.
2. Problems 10–145 were generated using (64)–(66).
3. For j = 10, . . . ,17, the function j generated 8 problems, varying (66) and aijrs .
4. For j = 18, . . . ,20, the function j generated 24 problems, according to the details

given below.
5. In function 10, 4 matrices H were randomly defined with w = 1 and 4 matrices

H were defined with w = 5.
6. In function 11, 8 matrices H were generated randomly with w = 1 and null diag-

onal.
7. For j = 12,13,14, function j generated 8 problems combining 4 choices of aijrs

and 2 choices of H . The choices of aijrs came from combining p1 ∈ {0,0.99} with
[a1, b1] ∈ {[0,5], [0,500]}. The choices of H correspond to w ∈ {1,5} in (66).

8. For j = 15,16,17, function j generated 8 problems combining 2 choices of aijrs

and 4 choices of H . The choices of aijrs correspond to p1 ∈ {0,0.99}. The choices
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Fig. 2 Performance profiles,
Local vs. Global strategies:
K = 50,N = 5 using stopping
criterion (71)

of H correspond to the generation of two matrices H (66) with w = 1 and two
additional matrices H with w = 5.

9. For j = 18,19,20, function j generated 24 problems combining 2 choices of
aijrs and 12 choices for H . The choices of aijrs correspond, as in 15–17, to
p1 ∈ {0,0.99}. Finally, 6 matrices H were generated using (66) with w = 1 and 6
additional matrices came from taking w = 5.

In Fig. 1 we exhibit the comparison between the Inexact Restoration method
described in this paper, the Levenberg-Marquardt (LM) (also called trust-region)
method described in [9] and the classical SCF-DIIS method. In Fig. 1a we consider
that a method solved the problem when it stopped at a point satisfying (71). In Fig. 1b
we preserved (71) as stopping criterion, but we considered that a method solved a
problem when (72) took place for some k.

For a better visualization of these figures, note that the curve value M(x) at the
middle point of the x-axis (x = 100) represents the number of problems solved by
Method M if the maximum time allowed is twice the computer time used by the
method that solves the problem fastest.

Figure 1a shows that, when minimal computer time is available, SCF-DIIS is the
best method (left-wing of performance profile), followed by IR and LM. Doubling
the available computer time for each problem, SCF-DIIS remains to be the method
that solves the largest amount of problems, being LM now the second. However, if
we allow the algorithms to run during enough computer time, IR turns out to be the
algorithm that solves the largest amount of problems.



Inexact restoration method for minimization problems arising 583

The main difference between Fig. 1a and b is related with the behavior of LM.
When one considers, as in Fig. 1a, that a method “solves a problem” when it sat-
isfies the convergence criterion (71), LM is the worst of the three methods. How-
ever, when we adopt, as solvability criterion, the minimal functional value reached
by each method, LM outperforms SCF-DIIS for sufficiently large time tolerance.
Giving enough time to the three methods, IR remains to be the best, being now LM
the second. This reflects the fact that, many times, LM reaches in a reasonably small
amount of time the smallest functional value, but it fails to achieve the KKT precision
(71).

We observed that, in some problems, IR needed to use a very small value of tk to
satisfy the descent criterion (45). This motivated us to try a different (local) version of
the Inexact Restoration method: Instead of performing the backtracking process (45)
we set Xk+1 = Xk + Ek for all k ∈ N. As a consequence, Step 2 of Algorithm 4.1
may also be skipped. The resulting algorithm is called IR-local, since its resembles
the local algorithm defined in [13]. Figure 2 is the performance profile corresponding
to the comparison of Algorithm 4.1 (IR-global from now on) with IR-local. We use
the criterion (71) for declaring that a method solved a problem. This profile seems to
show that IR-local is better than IR-global both from the point of view of efficiency
and robustness in this set of problems. In fact, we also verified that IR-local tends
to obtain lower functional values than IR-global. We are reluctant to recommend a
merely local convergent algorithm instead of a global one based in a limited num-
ber of experiments. However, it is not unusual that a local quadratically convergent
algorithm that produces bounded iterates reach the convergence basin of a solution
faster than its global counterpart. Experiments comparing local and global forms of
Newton’s method for solving nonlinear systems frequently show this phenomenon
[35].

8.3 Example with K = 700,N = 70

The experiments presented in Sects. 8.3 and 8.4 were run in a laptop with Intel Core
2 Duo 2.2 GHz processor bearing 2 Gb of RAM memory.

We consider Function 1 with K = 700,N = 70. Then, the number of variables
n is 490,000 and the dimension of the tangent subspaces is N(K − N) = 44,100.
Convergence of the global form of IR occurred in 142 iterations, using approximately
2 hours and 45 minutes of computer time. The final (and best) f (X) obtained was
0.541707713190007.

At the first 131 IR-iterations the conjugate-gradient method in the optimality phase
finished detecting “nonpositive curvature direction” using ≈ 100 CG-iterations.

At the last 11 IR-iterations CG converged using ≈ 240 CG-iterations (163 CG-
iterations at the last one). The KKT values (71) at the final iterates were: 4.0 ×
10−4,4.0 × 10−4,4.0 × 10−6,1.2 × 10−9.

In this problem, the local IR method reached f (X) = 0.55642673 after 3 hours
of computer time, but failed to improve this value during the next 9 hours (2297
iterations). The final KKT value was ≈ 10−2.

SCF-DIIS also failed to find an acceptable solution. The best functional value was
obtained at iteration 5 (f (X) = 28.6) and did not improve in the next 5 hours. The
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SCF method, without acceleration, got very small progress at the 858 first iterations
(getting f (X) = 35.94) and, after that, could not improve the functional value any
more.

The LM method, after 3090 iterations and 5 hours of CPU time, obtained a func-
tional value of 0.541708936 with KKT ≈ 10−5. After 9800 iterations and 12 hours
obtained f (X) = 0.541707713272647 with KKT ≈ 9. × 10−8. It stopped due to im-
possibility of further decrease the function.

8.4 Electronic structure calculations

We studied the behavior of the Inexact Restoration algorithms in some typical elec-
tronic structure calculations arising in computational chemistry (from now on called
“easy” problems) and in some designed problems known to display convergence in-
stabilities [8, 9] (called “hard” problems). Easy problems are standard organic mole-
cules Carbon dioxide, Ethylene, Ethanol and Benzene, and some common biolog-
ically relevant molecules, as Alanine, Alanine dipeptide, Histidine and Tyrosine.
These easy examples were selected to illustrate the behavior of the algorithms in
problems for which convergence is usually straightforward. On the other side, we
also performed tests on some electronic structure calculations known to display mul-
tiple local minima and convergence problems: CrC, Cr2, Rh2 and an arrangement of
atoms of formula Li9F9 [8, 9]. Two geometries were considered for hard cases: for
diatomic molecules, one with atom-atom distance of 2 Å and, in addition, a distorted
geometry, with atom-atom distance of 10 Å. For Li9F9, we used the standard and dis-
torted geometries described in [9]. Distorted geometries are usually associated with
increased convergence difficulties.

Standard 6-31G [36] and STO-3G [37] atomic orbital basis were used for easy
and hard problems, respectively. The h-core (H ), the overlap matrix and the two-
electron integrals were computed with the GAMESS package [38], and loaded in an
in-house implementation of the algorithms. The initial point in all cases is defined as
X0 = �(H), where � is given by (5). The DIIS and LM algorithmic details are
described in [9] and the implementation of the global and local IR methods was
the same as described for previous examples. All algorithms were implemented in
Fortran77. The gfortran version 4.2 was used for compilation with the “-O3” flag.
The examples were run on a AMD Phenom 9850 Quad-Core machine with 4 Gb of
RAM memory running Ubuntu Linux version 8.10.

We compared the algorithms IR-Global, IR-Local, LM and DIIS. To build Figs. 3
and 4, we define Ebest = Emin + 10−10 where Emin is the minimum energy solution
found by all methods for each problem. In Table 1, the minimum energy found by
each algorithm for each problem is compared by defining Esol as the minimum en-
ergy obtained by each method and computing 10 + log(Esol − Ebest ). This quantity
is zero if the minimum energy is the minimum found for all methods, and is positive
otherwise.

As can be seen in Table 1, all algorithms found the same minimum energy solution
for all easy problems, with the exception of DIIS for Histidine, which oscillated.
As expected, the LM algorithm requires much more iterations than other methods
in most of these problems, but converges smoothly in all of them. IR-Local, IR-
Global and DIIS are competitive when comparing the number of iterations required
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Fig. 3 Easy electronic structure problems

for convergence. IR-Local converged in the smallest number of iterations in 6 of the
8 problems, DIIS in 3 of 8 and IR-Global in one of them, the differences between
IR-Local and DIIS being small. For the present problems and implementation, the
cost of computing the gradient is larger than the cost of its spectral decomposition,
in such a way that IR iterations are more costly. For larger molecules, however, the
gradient becomes sparse and trivially parallelizable [39], thus using IR strategies may
be advantageous.
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Fig. 4 Hard electronic structure problems

The fast local convergence of the IR algorithms is clearly visible in the sequence of
iterates of Fig. 3. Far from the solution the decrease of the energy proceeds slowly, but
a rapid drop in the error is obtained in final iterations. On the other side, DIIS displays
an approximate linear convergence from the first iterations when it is successful, and
is able to provide a more effective reduction of the energy far from the solution.
LM decreases the energy monotonically but slowly. The combination of different
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Table 1 Number of iterations and relative energy (logarithmic scale) for electronic structure problems.
Nit is the number of iterations required for convergence, Esol is the energy of the solution found for each
method and Ebest = Emin + 10−10 where Emin is the minimum energy found for all methods

Example Dimensions (N/K) Results: Nit (10 + log(Esol − Ebest ))

IR-Global IR-Local LM DIIS

E
as

y
pr

ob
le

m
s

(a) Carbon dioxide 11/27 24(0) 15(0) 32(0) 15(0)

(d) Ethylene 9/30 18(0) 11(0) 26(0) 13(0)

(b) Ethanol 13/39 24(0) 18(0) 43(0) 17(0)

(c) Benzene 21/66 23(0) 17(0) 115(0) 22(0)

(e) Alanine 24/68 25(0) 15(0) 178(0) 24(0)

(h) Alanine dipeptide 43/123 28(0) 30(0) 412(0) 25(0)

(f) Histidine 41/117 26(0) 20(0) 341(0) a( a )

(g) Tyrosine 48/139 21(0) 35(0) 535(0) 39(0)

H
ar

d
pr

ob
le

m
s

(c) CrC 15/24 161(0) 38(0) 78(9.1) 37(9.2)

(d) CrC(distorted) 15/24 92(8.6) 57(0) 199(3.6) 25(8.8)

(a) Cr2 48/38 152(8.8) 80(0) 201(9.6) 68(9.2)

(b) Cr2(distorted) 48/38 92(8.7) 122(8.7) 186(0) a( a )

(e) Rh2 45/58 492(7.6) 259(7.6) 559(0) 44(9.1)

(f) Rh2(distorted) 45/58 202(8.5) 871(0) a( a ) 122(9.2)

(g) Li9F9 54/162 142(9.6) 75(9.6) 201(7.7) 103(0)

(h) Li9F9(distorted) 54/162 331(9.9) a( a ) 340(0) a( a )

aFailed to convergence in 1000 iterations

methodologies in different stages of the optimization procedure, particularly by the
use of IR strategies close to the solution, seems to be promising.

In challenging electronic structure problems, summarized on Fig. 4, the behavior
of the algorithms is less predictable. The solution with minimum energy was found
in 1 of 8 problems by IR-Global, 4 by IR-Local, 3 by LM, and in 1 of 8 problems
by DIIS. Therefore, IR-Local and LM seem to be the most successful algorithms. On
the other side, the only algorithm that was able to converge within 1000 iterations in
all cases was IR-Global. IR-Local and LM failed in one case1 and DIIS failed in two
cases.

Overall, the behavior of the local implementation of IR is satisfactory. However,
Li9F9 illustrates the importance of a globalization strategy. As can be seen in Fig. 4h,
DIIS exhibited oscillatory behavior, and IR-Local was unable to reach the proximity
of any solution, so that it could not take advantage of fast local convergence. This
erratic behavior of the IR-Local algorithm was also observed in Rh2 (Fig. 4e) and
Rh2 (distorted) (Fig. 4f), although it finally converged. The introduction of the glob-
alization strategy clearly stabilized the iterations, and cannot be discarded.

1LM converged in 1353 iterations in Rh2 (distorted), as predicted by theory, and obtained the lowest
energy solution.
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9 Final remarks

We showed that the Inexact Restoration approach provides a reliable globally and
quadratically convergent method for solving the class of optimization problems that
appear in Closed Shell electronic calculations. Its main attractiveness comes from
the fact that eigenvalue computations are not necessary. IR takes proper advantage of
the structure of the underlying optimization problem. In particular, suitable projec-
tion formulae make it possible to use the CG algorithm restricted to tangent spaces
without large matrix manipulations. The CG algorithm finds tangent space solutions
(or nonpositive curvature directions) in a small number of iterations, relatively to
the dimension of the subspace. Moreover, due to the eigenvalue structure of points
in the tangent subspace we are able to define globally and quadratically convergent
Newton-based methods for restoration.

As a consequence of the theoretical facts mentioned above, the method has a good
behavior in problems with moderate values of K and N , and is competitive with
the popular DIIS algorithm, which depends on eigenvalue calculations, in typical
electronic structure calculations. This encourages us to develop an implementation
for large K,N , taking full advantage of the sparsity of iterates and gradients. The first
steps were taken towards such implementation. We used a family of linear-objective
problems, where the gradient was block-diagonal, with 17 × 17 blocks, K ≈ 2 × 106,
N = 4 × 105. The off-diagonal entries of the blocks were −1, N diagonal entries of
the gradient matrix were equal to 2 and the remaining K − N entries were equal to
20. We used a specific structure for the problem and we performed all the operations
taking advantage of that structure, so that fill-in is not possible. The IR methods (both
global and local) converged in about 4 iterations using less than 2 minutes of CPU
time.

We guess that fast local convergence can also be exploited to improve convergence
of other algorithms when close to the solution.

The application of IR is not restricted to the Hartree-Fock case, in which the ob-
jective function is quadratic. In fact, there is no restriction on the form of the ob-
jective function for using this approach. In general cases we cannot use the classical
quadratic conjugate gradient algorithm in the tangent minimization phase, but we can
use modern forms of the CG algorithm for non-quadratics, as the ADA algorithm of
Hager and Zhang [40] or variations of the spectral projected gradient method [41–43].
Future research along these lines is expected.

Acknowledgements We are indebted to two anonymous referees whose comments and remarks helped
a lot to improve the first version of the paper.
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