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As far as more complex systems are being accessible for quantum chemical calculations, the
reliability of the algorithms used becomes increasingly important. Trust-region strategies comprise
a large family of optimization algorithms that incorporates both robustness and applicability for a
great variety of problems. The objective of this work is to provide a basic algorithm and an adequate
theoretical framework for the application of globally convergent trust-region methods to electronic
structure calculations. Closed shell restricted Hartree—Fock calculations are addressed as
finite-dimensional nonlinear programming problems with weighted orthogonality constraints. A
Levenberg—Marquardt-like modification of a trust-region algorithm for constrained optimization is
developed for solving this problem. It is proved that this algorithm is globally convergent. The
subproblems that ensure global convergence are easy-to-compute projections and are dependent
only on the structure of the constraints, thus being extendable to other problems. Numerical
experiments are presented, which confirm the theoretical predictions. The structure of the algorithm
is such that accelerations can be easily associated without affecting the convergence properties.
© 2004 American Institute of Physic§DOI: 10.1063/1.1814935

I. INTRODUCTION However, some of the methods currently used still rely on
. _ . . ._the fixed-point iteration in some way. Particularly, the direct
Electronic structure calculations are being used in an in-

creasingly large number of research fields. Several Welllnversmn of the iterative subspace method of PUBYS)

developed computer packages are available, which provide(aRef' 3 was designed to stabilize the fixed-point iterations

large scope of algorithms and analytic tools in such a Wa)py an extrapolation of the Fock matrix that aims to minimize

that it is not required that the users fully understand thd€sidual vector norms. Although the DIIS method is also
methods for obtaining valuable results. For this to happen, jtsed in our days in different contests is in its original

has been necessary that the algorithms involved beconferm that it is most frequently employed.

faster, user-independent, and reliable. The basis of most elec- Other techniques were proposed to improve convergence
tronic structure computations are the fast and inexpensivef SCF iteration$:*”~*In the level-shift methodthe first
self-consistent fieldSCH algorithms. The ones based on algorithm claimed to have unconditional convergence
Hartree—Fock (HF) and Kohn—-Sham density functional propertie$?) the virtual orbitals are shifted to higher ener-
theories are the most populet.Since these problems are gies. This method depends on a user specified parameter
nonlinear, the algorithms require iterative updating of thewhich can be obtained only by trial and erfdf The second-
var?ables(dens_ity matri?< or eigenvectors of the Fock ma_lrix “order SCF methodRef. 14 relies on an exponential param-
untilself-consistency is achieved and hence a solution igyzation of the energy as a function of the density matrix.
found. The energy minimization problem becomes unrestricted and

The first method designed to solve the HF problem WafNewton’s method for unconstrained optimization is used.

based on a naive fixed-point iteration that consists in the_ . . . .
. point Shis method has robust convergence properties, but it relies
construction of the Fock matrix from the current guess fol-

lowed by its diagonalization in order to obtain the new set of>" the availability of the Hessian, which is computationally

orbitals. This method has slow and unstable convergenci’Y expensive. Other methods based on the exponential pa-

properties and, thus, is no longer used for practical purpose§@metrization of the energy have been proposed, but global
convergence is hard to obtain since matrix exponentials are

Ajectronic mail: juiano@i . . not computed exactfy.
ectronic maill: jullano@ime.unicamp.or . .
bElectronic mail: martinez@ime.unicamp.br Let us recall here the meaning gliobal convergencn

®Electronic mail: Imartinez@igm.unicamp.br ordinary optimization literature. An algorithm is said to be
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globally convergent if the sequences that it generates eitheletails are discussed in Ref. 18. The nonstandard trust-region
stop at a point that satisfies first-order optimality conditionsapproach of Ref. 18 makes it difficult to develop a rigorous
(usually calledstationary point or have the property that all convergence proof for this algorithm. The existence of such a
its limit points are stationary. This property must hold inde-proof remains a challenging open problem.
pendently of the initial starting point and, as much as pos-  Although developed independently, the present research
sible, independently of any additional property of the se-s related to, and, in some sense, complements the results of
guence. In practical terms, this means that given a smalRef. 18.
tolerances >0, any sequence generated by a globally con-  Here we introduce a new trust-region optimization algo-
vergent algorithm necessarily stops at a point that satisfiegthm with proved global convergence for closed shell re-
the convergence criterion defined by the tolerance. It must betricted Hartree—Fock SCF iterations without UWP or re-
warned that, since stationary points are not necessarily globgdted assumptions on the sequence itself. The classical fixed-
minimizers, global convergence does not imply convergenc@oint step is naturally incorporated to its structure. The first
to the global minimum of the optimization problems. procedure at each iteration of the trust-region method will be
Aiming a fully reliable, user independent method, to minimize a quadratic approximation of the energy func-
Cance and Le Bris developed an optimal damping algorithmjon. we give a simple proof that a solution of this subprob-
for which they proved global convergence whenever the itiem is given by the classical fixed-point iteration. The main
qrat%c,wsaUSfy auniform well-posednessUWP) assump-  ingredient for obtaining global convergence is not the choice
tion.”™"* Coupled with DIIS, this method provides more ro- of the first trial point at each iteratiofwhich may lead to
bust convergence than DIIS alone and preserves qompetiti\gqeps that are too long to be trusted, as observed in REf. 18
convergence raté_§.More recently, Thogerseet f"‘l'ls INtro- put the choice of restricted steps after a possible failure of
duced a trust-region methd@RSCH for optimizing the t0- e first trial. (The first SCF trial step can even be skipped
tal energyEscr of Hartree—Fock theory and Kohn—Sham ot violating global convergendeThe restricted steps
density-functional theory. Trust-region methddse Ref. 19 jq0 4 hossible failure of the first trial come from the mini-
for unconstrained optimization were suggested by P&Well i oiion of a new quadratic model with a simplified block-
in 1970. The most complete global convergence proof of th%iagonal Hessian motivated by the classical Barzilai
Newton-based trust-region algorithm for unconstrained prObBorwein or spectral choice of the steplength in numerical
lems was given by Sorensgrin 1982. At each iteration of a optimization?*% We will explain in which sense this is a
trust-region algorithm one minimizes a quadratic aplorOXima'Hessian apbroximation. The computation of this restricted

tion of the objective function on a ball centered in the current . . : . . .
. . . S is ch in th nse that it requires the diagonalization
point and defined by som@ot necessarily Euclidiandis- step is cheap in the sense that it requires the diagonalizatio

: o . . . of a matrix whose dimension is of the order of the number of

tance. If the reduction of the objective function obtained in . . .
. . : .occupied molecular orbitals only. A key point of our algo-
this way is of the same order as the reduction of the quadratic : L ) .
S . L . rithm is that, after each main iteration, an acceleration pro-
approximation, the trial point is accepted as new iterate. Oth- . . . . .
) . . . cedure is admissible with the sole requirement that it does

erwise, the radius of the trust-region ball is reduced and the ™ .
ot increase the value d&gcr. In our experiments we use

uadratic approximation is minimized on the new restricte . i
d PP IIS as accelerating algorithm but, of course, any other ac-

region. If the gradient of the objective function at the current lerati d is admissibl h ; le. th
point is equal to the gradient of the quadratic model and thé&® erallon proce gre ISa mfISISIEI(DeISS;Cf af’ or e‘lz(lggcplf, €
current point is not stationary, the iteration necessarily finrécently proposed successiu (&ef. 179 or

ishes successfully and, so, a better iterate is obtained. AéRef' 18 algorithms. In this sense, our algorithm may also be

cording to the degree of success of the iteration, the radius dpterPreted as a simple way to provide global convergence to

the next trust region is increased or decreased. Many authof&€thods that are known to be efficient in most cases. Sum-

used trust region algorithms for solving minimization prob- MiNg up, the objective of this paper is to introduce a trust-

lems with simple constraints but, only in 1995, Magz and ~ '€9ion glgonthmlc framewqu for SCF gleptromc structure

Santo% gave a complete global convergence theory for feac@lculations with the following characteristics:

sible trust-region methods with arbitrafgossibly nonlinear (1) Rigorous global convergence independently of the

and nonconvex constraints. In Ref. 23 the same authorsinitial point. o

completed the theory with local and convergence-rate results.  (2) The structure of the iterations that ensure global con-
The TRSCF algorithm of Thogersat al. exhibits very ~ Vergence is independent of the structure of the objective

nice practical behavior. In this algorithm the trust region atfunction, so this type of iterations is applicable to other prob-

each iteration is not defined as the intersection of a compadems with similar constraints.

ball with the feasible regiotias in Ref. 22 but as the inter- (3) The algorithm is such that the association with other

section of a linear half-spaddefined in terms of the density €fficient methods is straightforward.

variable$ with the feasible set. When the reduction of the  (4) Experiments will show that, in practice, the algo-

energy functionEscr is not satisfactory, the frontier of the rithm behaves as predicted by theory.

half-space(an hyperplangis moved towards the current This paper is organized as follows: In Sec. Il we describe

point so that, ultimately, energy decrease is obtained. Th#he general lines of the forthcoming trust-region algorithm

solution of the trust-region subproblem is always seeked oand the main features of its implementation. In Sec. lll we

the hyperplane and it involves the diagonalization of a level+ecall definitions and properties of the problem and we give

shift augmentation of the Fock matrix. Many implementationa simple proof that the first subproblem solved at each itera-
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tion coincides with the fixed-point iteration. In Sec. IV we gion are easy-to-compute projections. Therefore, the itera-
briefly describe the resolution of simple quadratic trust-tions that guarantee global convergence can be computed
region problems and we state the fact that these solutions aeecurately in reasonable time.

easily computed nonlinear projections. The rigorous defini-

tion of the trust-region algorithm for our problem is given in

Sec. V. In Sec. VI we describe the numerical eXperimentqH_ THE FIXED-POINT ITERATION AS THE SOLUTION

and in Sec. VIl we state conclusions and lines for futurepr A QUADRATIC MODEL

results. The appendixes contain a rigorous convergence proof

for the algorithm and the justification for the nonlinear pro-  Atypical iteration of a trust-region method of the family

jection procedure used in reduced trust regions. introduced in(Ref. 22 begins by the minimization of a qua-
dratic model of the objective function on the feasible region
II. ALGORITHMIC OVERVIEW under consideration. In this section we will show that, in the

case of restricted Hartree—Fock calculations, such minimiza-
tion is accomplished by the classical fixed-point iteration.

The classical definition of the Hartree—Fock problem is
as follows! ! Let 2N andM be the number of electrons and
nuclei in the system, respectively. We cHlland S the core
Hamiltonian and overlap matrices, respectively.

Given K, the number of functions of the basis sétis

fhe K x N matrix of coeficients for the expansion of the oc-
cupied molecular orbitals in terms of atomic orbitals. The
closed-shell restricted Hartree—Fock energy is given by

N

The algorithm presented here is a trust-region meffiod.
The main iteration uses a quadratic approximation of the
objective function around the current iterate and minimizes
this quadratic model subject to the problem constrafimts
this case, weighted orthonormality constraint®nce the
guadratic model is minimized, a netwal point is obtained.
Then, we test whether the decrease of the objective functio
at the trial point(actual reductiofn is meaningful when com-
pared to the reduction of the quadratic mo@mkdicted re-
duction. Of course, the predicted reduction will be similar to
the actual reduction whenever the quadratic model is a good
approximation of the objective function. If the actual reduc-  EsceX)= Z X{TF(X)+H]X;,
tion is at least a given fraction of the predicted reduction, the -
trial point is accepted and the trust-region iteration finisheswhereF (X) is the Fock matri{see Appendix A™*®

The energy at the trial point obtained by the minimiza- ~ We consider the optimization problem
tion of the model may be highéor, perhaps, not suﬁiciently Minimize Escd(X) subject toXe QCRKXN, (1)
lower) than the energy at the current iterate. In this case, the
trial point is not accepted. Consequently, the algorithm prowhere () is the set of matrices oK rows andN columns
ceeds minimizing a simple quadratic model of the energy iWhose _columns satisfy the weighted orthonormality condi-
a smaller trust region around the current point. This procestons X/ SX=3; .
is repeated and, if the trust region is small enough, the de- Suppose thaK e Q is the current approximation to the
crease of the true energy becomes of the same order as thelution of Eq.(1). In order to obtain an even better approxi-
decrease of the quadratic model energy. mation, we are going to define guadratic model of

A trust-region method for arbitrary constraifftss com-  Esc(X). This quadratic model, denoted Ig)(X), will be a
putationally implementable when a meaningful quadraticgood approximation oEgc{X) —Egc{X) in a neighbor-
model is easy to obtain, its minimum subject to the con-pgod of X. We define
straints of the problem is computable and minimizers of a
suitable quadratic model subject to the problem constraints
and smaller trust regions are also easy to compute. These
conditions may not be easily fulfilled. For example, the qua-

. N
dratic model could be the complete second-order Taylor ex- CUTAE Ty T
pansion, but this would require the computation of the Hes- 52 (Xj= X)) 4F(X) (X = X)). 2
sian, which may be very costly. Moreover, it is very difficult
to compute a global minimum of the second-order Taylor
model subject to orthonormality constraints. Finally, there do  9E -« X)
not exist practical methods for computing minimizers of ar- ~ —_5—— = F(X)X; (©)
bitrary quadratic models subject to problem constraamtd ! o
trust regions. and coincide with the derivatives @(X) whenX=X. The

The algorithm presented in this paper provides suitablesecond derivatives dEgc(X) are hard to compute, so they
solutions for these difficulties. We show the following: are replaced in Eq2) by a simplification suggested by Eq.

(1) The classical fixed-point iteration is the global mini- (3). The simplification comes from differentiation of both
mization of a meaningful quadratic model of the energy subsides of Eq.(3) using the product rulg¢(uv)’ =u’v+uv’]
ject to orthonormality constraints. Therefore the first step atind neglecting, in the product formula, the term that involves
each iteration of our trust-region method coincides with thederivatives ofF(X). Although, as pointed out in Ref. 18, this
classical fixed-point iteration. may represent a rather rough approximation of the true Hes-

(2) Global minimizers of a simplified quadratic model sian, very good Hessian approximations may not be neces-
subject to orthonormality constrainésxd a smaller trust re- sary at all in trust-region calculations due to the necessity of

N
QX)=42, (X=X)TF(X)X,

|_\

The first derivatives oEgc( X) are
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performing large steps when we are far from the solution. Consider the case in whidisc{ Xgp) is notsufficiently
In any case, as we will see later, global convergence propesmaller thanEsc({X). In principle, we could minimize the
ties do not depend of this specific choice of the modelsame quadratic mod&D(X) on the intersection of the fea-
Implementations of the main algorithm skipping this step aresible region() and a suitably small trust region. However, we
admissible. have two strong reasons for proceeding in a different way.
The SCF problem consists on finding a set of vectorson one hand, the fact thatgp failed to produce a good
Xy,.... XN, which are generalized eigenvectors of the Fockdecrease of the energy makes one think that the model is not
matrix calculated from the same set of vectors. Thus, a solugood enough for approximating the energy at this point, per-
tion of the SCF problem satisfies haps because the Hessian approximation is not good or be-
FOX)X;=\;SX  Vj=1,..N. (4) cause high(.er_or_d_er terms are dc_>minan_t. On the othgr _hand,
although minimizingQ(X) on Q is straightforward, mini-
The matrixX that fulfills this condition is called &ock fixed mizing this quadratic on the intersection &f with a trust
point If the generalized eigenvalues,... Ay correspond-  region is not simple at all. Let us recall that, in the classical
ing to the eigenvectorX,... Xy are theN smallest eigen-  framework of trust-region methods, a trust region of radius
values ofF(X), X is called an Aufbau Fock fixed point. s defined as the set of points whose distance to the current
The classical fixed-point iteration is suggested by theterate is less than or equaltoln other words, a trust region
definition of Aufbau fixed points: GiveX,... Xy, one cal- is a ball, although not necessarily defined by the Euclidian
culatesXy,...,Xy, the generalized eigenvectors correspond-distance.
ing to theN smallest eigenvalues df(X). Therefore, we Minimizing a quadratic model on the intersection @f
obtainX such thaﬂ:(Y)Xj:)\jSXj forall j=1,... N. With a trust region might.be very difficult. However, we wil!
~ define the new quadratic model and the new trust region
radius in such a way that this solution is simple. The new
quadratic model has the same first derivatives as the one
éjefined by Eq(2) but its second derivatives are different. Its
definition is

Given a current iteratX e (), the first step of our trust-
region algorithm will consist on the minimization of the qua-
dratic approximatiori2) on the feasible se®. Now, we give
a simple proof that this model minimization corresponds to
fixed-point iteration.

Theorem 3.1. Assume thatX2, and Xep, the matrix of
the elgenvectors corresponding to the N smallest generalized Qnen(X)= 42 (Xj— -X )TF(X)X

eigenvalues of EX) is the fixed-point iterate. ThengXis a

global solution of 13 N
. . 52 (G=X)TToSIX = X;). (7)
Minimize Q(X) subject toXe Q. (5) 2=
Proof. By Theorem 1.2 of Ref. 31, the fixed-point iterate The first-order terms of,,.,, are the same as the ones of
Xep solves the problem Q but the second-order terms are different. In the Hessian
N . approximation used in Eq7) the matrix 4 (X) [used in Eq.
Minimize >, 2X]F(X)X; subject toXe Q. (6) (2] is replaced by th& X K matrix ¢S.
=1

In Eq. (7), the scalarc is the so-called spectral
The objective function of Eq(6) is quadratic and direct coefficient?*~*°the effect of which is that the matrix of sec-
calculation shows that it has the same first and second d@nd derivatives of the model is a simple approximation of

rivatives asQ(X) at the current poinkK. Therefore, the dif- the true Hessian oEsc(X). After the definition of Algo-
ference betwee®(X) and the objective function of E{6) rithm 5.1, with a more adequate notation, we will state the
is a constant. This implies that ES) and(6) are equivalent reasons why the Hessian of E@) is really a suitable Hes-
problems. So, the fixed-point itera¥gp is a solution of Eq. ~ sian approximatio>?®*°Roughly speaking, the Hessian ap-
(5), as we wanted to prove. O proximation in Eq.(7) is the multiple of the matrix with
diagonal blocksS which is closest to the true Hessian.
IV. MINIMIZING A QUADRATIC MODEL Even .the minimizaFion o_f Eq(7) on _the intersection o_f
ON A SMALLER TRUST REGION Q) and a given trust region might be difficult. For overcoming
this difficulty, instead of minimizing explicitly the function

If the trial point Xgp computed by the fixed-point itera- o __ restricted to the trust region, we perform this task in an
tion is such thatEscHXgp) is sufficiently smaller than the implicit way. Namely, we minimize the sum @, and a
energy at the current poilitsc{(X) thenXgp (or, perhaps, an  penalty term of the form t(2) =\ o(X;—X;) "S(X;— X;)
accelerated stepwill be accepted as the new iterate of the on the feasible se@ without the epr|C|t trust- region con-
trust-region algorithm. If this is not the case, a quadraticstraint. Fortunately, increasinghas the same effect as de-
model of Escf(X) must be minimized on the intersection of creasing the trust-region radius. This process is illustrated in
the feasible se) with a suitable trust region. If the energy at Fig. 1. In Fig. 1a) we show, schematically, the rejected trial
the solution of the new subproblem is sufficiently smallerpoint X and the result of solving Eq8) for t=0 [mini-
than Egc{ X) then this solutionor an accelerated points  mizer of Eq.(7) on ]. The centerO of the level sets of
accepted. Otherwise, the trust region is reduced again, an@,.,, is the minimizer ofQ,,, without the constraint§) and
so on. can be obtained trivially solving a linear system. In Fi¢p)1
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N

New trial
(a) point (¢.=1)

XN matrix. This decomposition can be easily computed
starting from the diagonalization of tHhéx N matrix Z'Z,
although more efficient methods exiét.

The procedure for computing the solution of E§) is
described below in such a way that a computer code can be
easily written. The justification to this procedure is given in
Qo Appendix C.

(1) Compute
Q _

4 _\—
_ | <li2_ —1/2
o Z=| 82 =y SR X

(2) ComputeU andV from the reduced singular value
decomposition ofZ,

X Z=U3V". 9)
New trial X .
(b) point (= 1) P 0 (3) Compute the solution of8) as

FIG. 1. The solution of the easy subproblems after the first rejected trial X=5 2 yT.
point. (&) The new trial point must be the minimiz€},,, on a smaller trust

region. (b) This new trial point is obtained projectin@?ﬂ- 0)/2 on the

feasible set). V. FULL ALGORITHMIC DESCRIPTION

The main ingredients of the new algorithm for solving
Eg. (1) were given in the preceding sections. In this section
we assume, further, that the trial point obtained wittD has  we give a more precise description of our method and we
been rejectedbecause its energy is not sufficiently smaller state its theoretical convergence properties.

than ESCF(Y)] and, so,Q,, Needs to be minimized on the A Nonlinear programming problem

intersection of() with a smaller trust region. The way in o .
which this new trial point is obtained is shown in Figbl Let us express Eq1) as an optimization problem with

The new trust-region radius is not considered explicitly. m_vectors(mste?cxjNof matricgsas unknowns. Define=KN.
stead, a point in the segment that joins the unconstraineGor &l Xi,]j‘ » X=(Xg,...Xn), we define the vector
minimizer of Q,ew andX is computed and the new trial point vec(X) R by
is its projection on(}. X

The trust-region subproblem is then

N B __ 1\ - veq X) =
Minimize 4%, (X;—X))TF(X)X;+5 >, (X—X))T :
=1 2(=1 Xy,
><[(1+t)FS](Xj—Yj) subject toXe (80  Consequently, we definfd vec(X) |=EgcHX). Moreover,R

will be the set of points ilR" such that the corresponding

and the algorithm sketched in Fig. 1 for solving this problemK>< N matrix is in€2. Then, the problenl) can be written as

is given below.
Recall that the symmetric matr& admits a diagonaliza- Minimize f(x) subject toxe RCR". (10

tion, In other words, the problertil0) is exactly the same as

S= USESUT, the problem(1), where the matricial variable$ are replaced
) ) ) by vectorial variablex.
whereUg is unitary (square with orthonormal columns and The setR is compactclosed and boundédClosedness
rows), its columns are eigenvectors 8f andXs is the di-  1aang that limit points of sequences completely contained in
agonal matrix whose entries are the eigenvalueS.dince necessarily belong t®. This property is essential when
the eigenvalues are positive, we may define the square roghe discusses convergence of iterative methods since one
of S, wants to guarantee that, when a sequence is completely con-
sti2— USEé’ZUE. tained in the feasible s€€ or R in this casgits limit points
also belong to this set. The closednessko€omes from the
Consequently, we defin8 *?=[S"2]"1. Moreover, anyK  fact that the constraints that defifieare equations and non-
XN matrix Z admits a(reduced singular value decomposi-  strict (“less-than-or-equal-to} inequalities. The feasible set
tion of the form is also bounded because the constraiXisSX=1 are
Z=U,3VI bounded ellipsoids inRX. Compactnesgclosedness plus
Z=ZVZ» : :
boundednegsimplies that every sequence completely con-
where U, and V, are KXN and NXN matrices, respec- tained inR admits at least one limit point that belongsRo
tively, with orthonormal columns and, is a diagonalN In the convergence theory we prove that every limit point is
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stationary. So, since limit points exist, we will be able to may decide not to use them anymore, choosing always
conclude that the algorithm finds, ultimately, stationarytype(k)=2. The numerical experiments will correspond to
points. Geometric insight on the feasible §eind on New-  the first strategy described above.

ton and conjugate-gradient algorithms for minimization with
this type of constraints has been given in Ref. 33.

Every Iocgl n.1|n|m|zer”of Eq.(l)'must satisfy the 1. Algorithm 5.1
Lagrange optimality condition¥. This is because all the o
points inR areregular in the sense that the gradients of the Stép 1 Choosex € (0,1/2), 0< 0 pin<0max<> and the initial
constraints are linearly independent. As usually, points tha@PProximation X°e Q1 [so, x°=vec(X°) e R]. Set k0,
satisfy the optimality conditions are said to btationary o= 1. Choose
Stationgry po_ints can be t.ransformed in.tolal‘:ock fixed points  tyne0) e {1,2}. (12)
by multiplication by an unitaryN X N matrix.

Step 2
If type(k) =1, defineB,="H.
B. Nonlinear programming algorithm If type(k)=2 andk>0, computeoy, the spectral scal-

; 6,28
Here we define our trust-region method for solving Eq.Ing parametef;* by

(1). The iterates of the algorithm will be calle and the _ (X=xk"HT(gk—gk 1)
corresponding points vek() e R" will be denotedk®. More- 1= MAX Timin s MIN) Tmaxs kS k=T TA (R k= Ty
over, givenX e R¥*N we denotex=vec(X).
By Eq. (3), we have (13
Vi(x)=ved 4F(X)X] and
and Bk: O'kA. (14)
g“=ved 4F(X¥)X*] for all k. Step 3 Sett—0.
We defineAe R™" and H, e R™" by Step 4 Define
S 4F(X") Qi) =(gT(x—x) + 3(x—x*) [ B+t Al (x—x¥).
A= v Hy= . (15
S AF (X Computexyiy,» a global solution of
(1D Minimize Qy(x) subject toxeR. (16)
Therefore A and’H, areN-block-diagonal matrices with ) )
KX K blocks. If Qkt(Xuia) =0, terminate the execution of the algo-

. . k k . .
At some iterations we will usét, as Hessian approxi- Mthm declaring thak” (X%) is stationary.

mation, which corresponds to use the quadratic m@i&). Step 5

At other iterations we use the Hessian approximatqQA, Q) If

where gy is the spectral parameter mentioned before, and K

corresponds to use the “easy” quadratic modgL,(X). We FXirian) < OC) + Qo i) (a7
already know how to solve the subproblems associated toomputex*'e R such that

each quadratic model. Iterations whekg is the Hessian £ L) < (xga) (19)
approximation will be said to be dfpe 1 Reciprocally, the o Awalh
iterations where the Hessian approximatiornridA are said setk—k+1, choose
to be oftype 2 Iterations of types 1 and 2 can be chosen in

two basic ways: type(k) €{1,2}, (19)
(1) At its beginning, each iteration is always of type 1. and go to step 2.
This means that the mod&l(X) is used. IfXgp is good If Eq. (17) does not hold, then

enough, then this poirfbr an accelerated ohé accepted as )

a new iterate. On the contrary, B(Xgp) is not sufficiently (1) If type(k)=1, redefinetype(k)=2, and go to

smaller than the energy at the current point, the iteration iStP 2-

changed to be of type 2. This scheme corresponds essentially (2) If type(k) =2, sett—max(1,2t}, and go to step 4]

to the process sketched in previous sections when we defined Algorithm 5.1 has been described in such a way that its

Q and Q.- It corresponds to choose type@)] and implementation using the results on the solution of subprob-

typek)=1 in Egs.(12) and(19) below. lems(Secs. Il and IV is not difficult. However, some addi-
(2) In an alternative version of the algorithm all the it- tional explanation is necessary in order to make it more

erations may be of type 2. This corresponds to choosériendly.

type(0)=2 and typek) =2 in Egs.(12) and(19) below. (a) The requiremen(l7) states that thactual reduction
Algorithm 5.1 is stated in such a general way that otherf (x¥) — f(x"@) should be, at least, a fractiom of the pre-

strategies are possible to choose the type of each iteratiodicted reduction— Qy o(Xyia) . According to Eq.(15), one is

For example, if iterations of type 1 systematically fail we using the approximation
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F(x)~F(xK) + (g4 T(x=xK) + L (x=x) TB,(x— x¥) such as DIIS, or even TRSCF. By Ed.8), the energy at the
accelerated point only needs to be not greater than the energy
= f(x")+Qk,0(x). at the trial point. The convergence proofs are not affected at

all by the specific choice of“*?, provided that the condition

Observe thaQy o(x“) = 0. Since this approximation is correct (18) is satisfied.

up to the first-order terms, it is justified to require that the . .
X N . (e) If Qg (Xyia) =0 after solving Eq.(16) then, since
reduction of the true objective function should be of ther,t(xk)=0, it tuns out thaixX is a global solution of Eq.

same order as t.h.e reduction of the quadratic model. The p 16). Then,x* satisfies the Lagrange optimality conditions of
rametera quantifies the degree of agreement between bot

reductions. The first-order coincidence guarantees that, u s (.16)' But _t_hese Condltloqs_ are exactly the Lagrange op-
lessx is a stationary point, the conditioi17) will hold if timality condmlons of the original problemi10) due to the
Xyial IS close enough taX. The distance between the trial fact that thf first-order terms df and Qi are the same.
point X,z and the current point* is controlled by the trust- Therefore,x IS a stationary ppmt, yvh|ch justifies terminat-
region radius in classical trust-region methods and by thd"9 the execution of the algorithm in th|§ case.
reqularizing parameterin Algorithm 5.1, 'In subproblems of type 2 the Hessnaq approximation is

(b) At iterations of type 2 the Hessian approximation is de:lnfe? t;y En?s(nltlt) (1hB )’Wa?hd(tléz' ‘Ii)eitnufs gtl\:je ff;sre a r;:or?
o A. This matrix is the multiple oA which, in some sense, careful argument to sho atBd act detines a nes

is closest to the true Hessiafy(x¥). Roughly speaking, we sian approximation. Let us reclithe mean-value formula
have (x=x"HT(g"~gk )
g —gF I H (X (X=X,

1
=(xk=—xkhHT f H[ X<t 4 v(x*—x*"1) |d
so, premultiplying by x—x*1)T, we obtain ( ) o il v( ) |dv

(KX T(gR=g ) = (X=X TH () (K= %), X (X=X, (21)
Dividing by (x*—x*"hHTA(x*—x*"1), we get where, as aboveé{;(x) denotes the Hessian 6f Therefore,
(XK= Xk 1) T(gk—gk1) the coefficientoy is the factor by which it is necessary to

multiply the matrixA to become similar to thaverage Hes-

S Sty VI S o
(XE=xT ) A =X sian[fgH [ X< 1+ v (x*—x"1]dv]. This is exactly what we

(XK= xk= ) TH (xK) (xk—xk—1) do in Eq. (14). Rigorous analysis of methods exclusively
S T R RO TAK XKD (200 based on this approximation may be found in Refs. 25,
26, 28.

Making the (obviously wrong simplification of the terms
(xX*=x*"HT and x*—x*"1) on the right-hand side of Eq.

(20) we obtain C. Convergence
(xK— XK1 T(gk—gk~1) In Appendix B we prove that Algorithm 5.1 is globally
Hi(X~ —— 1A convergent without any additional assumption on the gener-
OE=XE ) TACE =X ated sequencgX*}. This means the following:
This justifies the choic€l3) except for the fact that, to pre- (1) The algorithm terminates at an iteratironly if X

vent numerical instabilities, we require that the coefficiept is a stationary point(Therefore, a set oN generalized
should belong to the closed intervied i, omad. IN turn,  eigenvectors can be immediately obtained frifn)

omin @nd oo, are parameters given by the user. If the quo-  (2) The iterations of Algorithm 5.1 are well defined in
tient (X*—x*"1)T(g"— g 1) /(xk—x*"HTA(xk—xk"1) lies  the sense that each iteration necessarily finishes in finite time
outside the interval o'min, omax, formula (13) forcesoy to i XX is not stationary.

be one of the extremes of this interval. A more careful mo-  (3) Any sequence generated by Algorithm 5.1 necessar-
tivation of the spectral coefficient based on mean-value arly admits limit points and all the limit points are stationary.
guments(21) is given below. Therefore, approximate Fock fixed points can be obtained up

(c) At iterations of type 1, the solution of the subproblem to any desired precision.

(16) is given by the fixed-point iteration. At iterations of type Reading the steps of Algorithm 5.1, we observe that the
2 the solution of the subproblem is given by the procedurelgorithm terminates at an iteratidnonly when, at that it-
described in Sec. IV. When the actual reduction defined byration,Qy (Xyia) = 0. In this case, as we mentioned before,
the trial point is not enough, the value ois increased(The  Q, (x¥)=0 and, sox* is a global minimizer of the subprob-
newt is set to be equal to the maximum between 1 ahdt2 lem (16) and satisfies the Lagrange optimality conditions. Of
the end of step 5.The effect of increasing is the same as course, in computer implementations, a more tolerant stop-
the effect of reducing the trust-region radius. ping criterion is used.

(d) When the trial poin{coming from any type of itera- Let us state now the main ingredients of the proof that
tion) satisfies the sufficient descent conditickv), the new the algorithm is well defined and globally convergent. Rig-
iterate may be any point satisfying E@L8). Clearly, the orous mathematical details are given in Appendix B. We say
choicex** 1= x, is admissible, since= x, obviously sat-  than an algorithm is well defined when each iteration neces-
isfies EqQ.(18). However, the weak requireme(i8) allows  sarily finishes; that is, infinite loops within a particular itera-
one to choosex**! by means of acceleration procedurestion cannot occur. We only need to consider the case in
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which the iteratex is not a stationary point. In this cas€ ~ want to prove that the limit point of any convergent subse-
is not a stationary point of the quadrat@ ; either. There- quence, which we cak*, must be a stationary point. Recall
fore, sincexyiy is a global minimizer ofQ, ; and Qk,t(x") that for each accepted poirt belonging to the sequence,
=0, we have thaQ, (Xyis) is negative for allt=0. Then, there exists a final trust-region radidg and, therefore, there
by the definition(15), Qi o(Xyiar) is always negative. But the is also a sequence of accepted trust-region radii associated
first-order terms ofQy o(x) are the same as the first-order with the subsequence of iterates under consideration. Let us
terms of f(x) — f(x¥), therefore the fact tha®y o(Xyiar) iS  assume, by contradiction, that the limit pokit is not sta-
negative forces that(x)—f(x,) is also negativgwith the  tionary. There are two possibilities for the trust-region radii
same order of its linear and quadratic approximatigns,;,  sequence:
is close enough taX. Since the effect of the penalty regu- (@ The trust-region radiug\, tends to zeroThe initial
larizing parametet is to reduce the distance betwerp,  trust-region radius of each iteration is greater than a fixed
and xX, it turns out that, fort large enough, the sufficient quantity A ,,,. Therefore, if the accepted trust-region radius
descent conditioil7) necessarily holds. This means that the A, tends to zero, there exists also a sequence of nonaccepted
iteration will finish after increasing a finite number of trust-region radii that tends to zero. This means that even for
times. arbitrarily small trust-regions, the actual reduction of the ob-
Now let us give the main ideas of the global conver-jective function would still be too small when compared to
gence proof. Note that the existence of limit points is guarthe predicted reduction of the quadratic model. This is im-
anteed by the compactness7f so it must only be justified possible ifx* is not stationary, since the actual and predicted
the fact that every limit point is stationary. reductions must be similiar for very small trust region radii
In Proposition B.1 we will prove that the subproblem (the quotient between them must converge to)one
(16) is equivalent to the following trust-region subproblem (b) A subsequence of trust-region radifzg is bounded
away from zeroRecall that the predicted reduction of the
guadratic model around a nonstationary point is positive
and whenever the trust-region is greater than zero. Furthermore,
the algorithm requires a constant proportionality between the
(x=x*)TA(x—x*)<A actual reduction and the predicted reduction in order to ac-
cept a trial point. Therefore, the actual reduction of the ob-
jective function must also be positive for an iterate to be
accepted. Then, since the subsequence of trust-region radii is
gounded away from zero, the predicted and actual reductions
are also positive and bounded away from zero infinitely
(Balls with respect to this distance are ellipsoiddiih) Due many times. Thjs implies th"?“ the. objective function value
n1;'ends to—co, which is impossible since we assumed that the

to this equivalence, the convergence theory of the algorith tends 1 and. then. the functi | t tend
is essentially reduced to the theory of convergence of trustﬁ)e?'(“'f*n)ce enas io- and, then, the funclion value must ten

region methods on arbitrary domains given in Ref. 22. Sev- .
g Y 9 Hence, we have that both alternatives and (b) are

eral technical aspects of this equivalence are given in Appen- o . i .
dix B P g 9 PP r%alse. This is a contradiction that raised from the assumption

that x* is not stationary. Therefore, any limit point of a se-
quence of iterate s generated by this algorithm must be sta-
tionary.

Minimize Qo(X) subject toxeR,

for an adequate trust-region radids that depends ort.
Whent is increasedA decreases anfl tends to zero wheh
tends to infinity. The restrictionx—x¥)TA(x—x¥)<A is a
typical trust-region constraint in the sense that it defines
ball with respect to the distance defined by the matkix

The main ideas in the theory of convergence of trust
region methods in arbitrary domafisre the following:

(1) At each iteration a quadratic model of the objective
function is minimized on the intersection of(aot necessar-
ily Euclidian) ball and the feasible region. The initial trust-
region radius at each iteration must be greater than a fixed The (unacceleratedGTR (global trust-regionmethod is
radiusA ,,. If the trial point so far obtained is such that the given by Algorithm 5.1 with the choice*™*=x, in Eq.
decrease of the objective function is proportional to the de{18). In the accelerated version of the algorithm we take
crease of the quadratic model, the trial point is accepted aadvantage of the freedom implicit in E(.8) and we choose
new iterate. Otherwise, the trust-region radius is decreased** as an accelerated step that uses the previous iterates to
For global convergence it is essential that the amount ofmproveXxy;, minimizing a residual approximation on an ap-
actual decrease must be proportional to the decrease of tipeopriate subspace. In the experiments, we incorporate the
quadratic model. The fact thafx*" )< f(x") is not enough  DIIS acceleration scheme to the basic structure of GTR. The
to guarantee convergence to stationary points since the sessulting algorithm will be called GTRDIIS. As stated in
guence might approach indefinitely to a nonstationary poinSec. V and proved in Appendix B, the theoretical conver-
in spite of monotone decrease of the objective function.  gence properties of GTR and GHDIIS are the same. In

(2) For proving global convergence, an arbitrary se-both cases limit points arénot necessarily AufbguFock
guence of iterates generated by the algorithm is considerefixed points and the tendency to converge to Aufbau points
We deal with the theoretical case where there is no toleranceomes from the fact that the first step of each iteration is the
for the detection of a stationary point. In such a case, eitheclassical fixed-point iteration.
the sequence stops abruptly when a stationary poietxis In GTR+ DIIS the acceleration is used from the second
actly found or the sequence has infinitely many terms. Wateration on. Therefore, the first extrapolation uses two re-

VI. NUMERICAL EXPERIMENTS
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TABLE I. Geometry parameters of the molecules used in the examples. ometries were chosen as examples since it is known that
distorted geometries cause convergence difficulfiei-

Geometry . - .

- nally, water and ammonia examples were introduced to illus-
Molecule  Bond length(A) Angle Dihedral trate how the trust-region algorithm behaves in situations
crC 2.00 where the classical algorithms are successful.
Cr, 2.00
co 1.40 A. Results
CO(Dist) 2.80 . .
H,0 0.950H) 109°(HOH) Table Il shows that the number of iterations performed

NH, 1.008NH) 109° (HNH) 120° (HNHH) by FP and GTR on one side, and by DIIS and GARIIS on
the other side are the same for the water and ammonia ex-
amples. This is due to the fact that both the fixed-point itera-

iduals. In the subsequent iterations the number of inter Otions and the DIIS extrapolations are always successful in
siauais. subsequ ! lons u interp oroviding new trial points with a significantly lower energy.

lating residuals is increased up to a maximum of 10. Fron]D . LT
. . n that case, the reduction of the trust region is never needed
then on, ten residuals are used. Moreover, residuals that cor-

: . ) and therefore the trust-region algorithms behave exactly as
respond to points where energy increases are discarded fchr . hod
extrapolation purposes. the supporting methods. . . .

The classical fixed-point method will be called FP and For the CO molec_ule with a STO-3G basis the clas_smal
its acceleration using DII8with the same number of residu- - method always fails to converge. The energy oscillates
als as GTR-DIIS) will be called, simply, DIIS. until the maximum number of |tergt|or(§001) is achieved.

The algorithmic parameters used wete,;;=0.01, For this exam'pl.e' the P”S.; method is very eﬁf|C|ent, converg-
0ma=100, 0,=0.5, and@=10"%. The algorithms were INd from any initial point in at most 11 iterations. The GTR
stopped when the relative difference between two consecdl€thod also converges in all cases, as expected, but it takes
tive energies was smaller than 10 almost twice the number of iterations as DIIS and converges

We used different types of initial points: diagonalized to & solution that does not satisfy the Aufbau principle when
core HamiltoniansH, Huckel guesses provided by the the initial point was derived from the Identity matrix. Finally,
GAMESS (Ref. 5 package for the same problem afimisome the accelerated GTRDIIS method converges rapidly and
cases the initial approximation induced by the Identity ma- with a few less iterations than DIIS, always to solutions that
trix is employed. These different initial approximations weresatisfy the Aufbau principle. In the distorted CO molecule
chosen because they can be easily reproduced. the robustness of the trust-region algorithms becomes better

We used, for our tests, molecules with the geometriedllustrated. The FP method fails to converge in all cases. The
specified in Table I. The molecules CrC and, @re known  DIIS method converges in 117 iterations to a point higher in
as having unstable convergence propefties.’Two CO ge-  energy than the solution found in 12 and 10 iterations by the

TABLE Il. Number of iterations performed by each algorithm in some test problems. FP: classical fixed-point
algorithm; DIIS: the DIIS acceleration of Pulay; GTR: the global trust-region algorithm without acceleration;
GTR+DIIS: the new trust-region algorithm accelerated by DIIS.

Algorithm
Molecule Basis Initial point FP DIlIS GTR GTR+-DIIS

H,O0 STO-3G Hore 7 5 7 5
6-31G Hore 18 8 18 8

NH; STO-3G Hore 8 7 8 7
6-31G Hore 14 7 14 7
CcO STO-3G Hore X2 11 22 10
Huckel x@ 7 16 7

Identity xa 11 17¢ 9

CO(Dist) STO-3G Heore X2 117 12 10
Huckel X 85 13 15
6-31G Hore X2 27° 158 115

Huckel X 36° 384 59
Cr, STO-3G Here 52 13 56 38
Huckel 12 33 398 134

Identity r 37 5¢ 26°

CrC STO-3G Here X2 X2 710¢ 29
Huckel X2 49 129 23

Identity xa 180 40 36

6-31G Hore X2 19 102 29

Huckel x@ 5% 113 37

aNo convergence in 5001 iterations.
PConverged to a point with Aufbau principle violation.
‘Converged to a higher energy than some of the other algorithms.
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GTR and GTR-DIIS methods respectively when a STO-3G E ' ' ' " Fp | =
basis is used from a core Hamiltonian initial approximation.
Using the Huckel approximation, DIIS converges to the low- &
est energy solution, but it takes 85 iterations against 13 anc@
15 iterations taken by GTR and GFRRDIIS, respectively. & _E | GTR B
Finally, when using a larger 6-31G basis, DIIS converges fast | \ CTRADIS O o 3
but to points higher in energy than the ones obtained by the 1ok A | , | £
trust-region algorithms. We observe that the GTR method(a) © 50 100 150 200
takes 384 iterations to converge from the Huckel initial ap- ,
proximation because its basic first-trial step is the classical
fixed-point iteration which systematically fails for this prob-
lem.

For the Cg molecule the DIIS method was more suc-
cessful than the trust-region methods. We obtained conver~ -6
gence of all the instances, but the FP method converged to.  -8F
point that lies 9.3 a.u. higher in energy than the solution -10%
found by the DIIS method. The differences in energy for the (b)
other solutions are of the order of<5L0 ° a.u. In these - ' ' ' ' ' " Fp
cases, the DIIS method converged in at most 37 iterations
whereas 398 and 134 iterations were needed to achieve cor@‘
vergence for the GTR and GHRDIIS methods respectively \
from the Huckel guess. g Gk !

Finally, a very interesting test was provided by the CrC RE | sTReDiIS Identity guess DS
molecule. For the 6-31G basis, all but the FP methods con- )k L1 s | ! |
verged. DIIS used fewer iterations when starting from the 0 50 100 150
core Hamiltonian but more iterations than GFRIIS when ~ © eration number
starting from the Huckel guess. The pure GTR method emg|G. 2. Convergence behavior of the four methods for the CrC molecule
ployed significantly more iterations than both methods in allusing the STO-3G basis.
cases, and converged to a solution slightly higher in energy.

When using the STO-3G basis, the tests were more ing, . o ~onvinuously being developed for building Fock-
teresting and the results are highlighted in Fig. 2. Startin Y 9 P 9

. : g4natrices reliability issues become more and more
from th re Hamiltonian both FP and DIIS failed t n-. ' . .
om fhe core Hamirto bo d DIIS failed to co important}’3® We claim that trust-region methods as the

verge, as can be seen in FigaR The GTR method con- ones introduced here could be used as an automatic alterna-

verged.in 71 iterations to a_higher—energy solution that doeﬁve to provide convergence for difficult problems when di-
not satisfy the Aufbau principle and the G¥RIIS method vergence or oscillatory behaviors are detected in other algo-

converged in 29 iterations to the lowest energy Aufbau solu-rithms
tion. From the Huckel guess DIIS converged but not as fast ‘
as GTR+-DIIS whereas GTR converged in significantly
more iterations. See Fig.(®. Finally, from the Identity Vil. CONCLUSIONS
guess, DIIS oscillates at the beginning and stops oscillating We introduced a new trust-region algorithm for perform-
probably thanks to numerical rounding errors. DIIS finally ing closed shell restricted Hartree—Fock electronic structure
converges in 180 iterations, as shown in Fi@r)2GTR con-  calculations. Global convergence was proved without any
verges in 40 iterations to a solution higher in energy andassumption on the sequence of iterates, thus showing that
GTR+ DIIS method converges to the lowest energy solutionconvergence must take place from any initial point. The
in 36 iterations. This is an interesting example where thanethod is also independent of any user-specified parameter.
DIIS method fails to converge from one initial point while The trust-region method so far introduced uses the structure
trust-region methods are successful. of the RHF problem to define the first trial point at each

It is worthwhile to highlight that the FP method fails to iteration, although this fact is not essential for global conver-
converge in 12 of 19 tests whereas the pure GTR methodence properties. If the user choosgpe(k)=2 for all k
converged in all cases in spite of the fact that the first triawhen running Algorithm 5.1, a globally convergent algo-
point computed at each iteration is identical to the fixed-rithm is also obtained. The resolution of the subproblems
point iteration. This fact illustrates the robustness of theassociated with the reduction of the trust region are easy-to-
trust-region strategy. compute projections. Due to these algorithmic features, the

We note that for each iteration of the trust-region meth-trust-region method is implementable. Numerical experi-
ods, more than one functional evaluation is needed when it iments show that the method is robust and behaves as pre-
necessary to reduce the trust region. For this reason, in critdicted by theory. Convergence is obtained in all the examples
cal cases a small number of iterations of the trust-regiorin spite of the fact that the naive fixed-point iteration is used
method does not necessarily reflects a small computer timas the first step of the trust-region iteration. The new method
However, since increasingly efficient linear-scaling proce-may be very useful when convergence failures of other algo-
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rithms are detected thus providing reliability for routine RHF
calculations. Any heuristic, case-oriented, nonconvergent or (MV|U)\)=J J ,9.(r)9,(ry
weakly convergent though efficient method may be used at T
the acceleration phase of our algorithmic framework without X9y (r2)gy(ro)dridrs,.
affecting the global convergence properties. In this sense, ﬂ\ﬁ/e define, for allu
GTR approach may also be interpreted, not as a competitor ’ '
of other methods but a safeguarding procedure for guaran- BZ”V=2(/WIU7\)—(/L)\IUV).
teeing global convergence. We showed that its associatio KXN /v _ . K x K
with DIIS is profitable and, certainly, we expect that its hy- Por all X« M (X=(X;)) we defineG(X) € " by
bridization with other method@specially those that produce NoK
feasible iterates, as TRSCRay be efficient. This is a very G(X)w:bzl ;1 B XopXap for all w,v=1,..K.
important feature when one deals with systems with complex o
wave-functions. The Fock matrixF (X) e RX*X is given by

A particular case of Algorithm 5.1 consists in taking F(X)=H+G(X), (A1)
type(k) =2 for all the iterationk. In this simplified version
the Hessian approximations are always choseB,asoA. whereH is the core Hamiltonian matrix with elements
As a consequence, the subprobled$) can always be
solved using thécheap technique described in Sec. IV. The H,L,,zf 3gM(r)[h(gy)(r)]dr,
interesting fact about this version of the algorithm is that its i
implementation does not depend at all on the form of theand the core Hamiltonian operatoris given by
objective functionf(x). In other words, it can be applied M
without modifications to any problem with weighted ortho- () (r)=— EVzgo(r)—E é(p(l’).
normality constraints. Therefore, the algorithm may be appli- 2 =1 Ir =il
cable to unrestricted Hartree—Fock, configuration interaction,
density functional theory and semiempirical methods withou2. Notation
major modifications. Moreover, the dependence of Algorithm
5.1 with respect to the form of the constraints lies on the fac;1 ot
hat we have a reliable method for solving the subproblems 2,13\ . . . .
ElG) The aldorithm mav also be applied to other t ¢ (2) C4(R®): the set of twice continuously differentiable

' 9 y bPlIEd 1o Other types o functions ¢: R3—R.

constraints, provided that good methods for solving the sub- (3) The transpose of a real matewill be denotedA

problems are available. The identit T .
. - . y matrix will be denotedl. The Frobenius norm
We believe that the efficiency of the algorithm of of A is denoted|Al .

18 .
Thogerseret al.*° and the robustngss and theoretical frame- (4) A square matrixC will be said unitary if CTC
work of our GTR approach provide a great support to the:CCTzl

implementation and further development of trust-region (5) &, denotes the Kroenecker symbo (=1 if i=], 0
strategies for electronic structure calculations. . 1 '

) ——
[ry—r,l

v, O, \,

(1) If fis a real-valued function ofi variables, we de-
eg(x)=Vf(x) andgk=g(x*) for xe R", xke R".

otherwise).
(6) If X=(Xq,....Xn) e R**N andje{1,... N}, we de-
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APPENDIX A: DEFINITIONS AND NOTATION In this appendix we give a rigorous proof that Algorithm

5.1 is globally convergent. We strongly rely on the theory
developed in Ref. 22. As in Ref. 22, the optimization prob-
Given the definitions oN and M given in Sec. Il the lem to which the trust-region algorithm applies will be quite
precise dependence of the Fock matrix with respetimas general. We will define Algorithms B.1 and B.2. Algorithm
follows:**3 Let {g;,....9«} CC?(R®) be a set of linearly in- B.1 is, essentially, the trust-region Algorithm 2.1 of Ref. 22
dependent functionghe basis s¢f with K=N. We assume with slight differences that favor its application to our prob-
that, for allu,v,0,\ €{1,... K}, the following quantities are lem. Algorithm B.2 is a Levenberg-Marquai’%ltnodification
well defined: of Algorithm B.1. In the Levenberg-Marquardt regularization

1. The Fock matrix
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approach the trust-region constraint is replaced by a penalty  f(x**1)<f(xk+s,), (B4)
term added to the objective function of the subproblem. In

this way, trust-region subproblems become easily solvables.e“(HkJrl and go to step 2.

Finally, we will see that Algorithm 5.1 is a particular case of <te If Eq. (B3) does not hold, set—{¢+1 and go to

Algorithm B.2. p3. ) .
Remarks In Algorithm 2.1 of Ref. 22 the subproblems

(B2) do not need to be solved accurately. Instead, each sub-
problem resolution is preceded by the minimization of a
Consider the problem simple majorizing quadratic of the formQ.(s)
=(1/2)M||s|5+g}s and, after that, a trial point such that

1. General assumptions on the problem

Minimize f(x) subject toxeR, (B1) l)[fk[gk(Ak’g)]ng[Sg(Ak'g)] is taken. Of course, if the trial
wheref:R"—R. Assume thaRR is closedf is differentiable increment is a global solution of E¢B2), the requirements
and of Algorithm 2.1 of Ref. 22 are also satisfied.

Observe that the conditio(B4) has the same meanin

V)~ Vi |=Lly-x] B g

and interpretation as the conditi¢h8) in Algorithm 5.1.

for all x, y belonging to open and convex set that contains  The global convergence theory of a minimization algo-
R. rithm usually involves two steps. First, one proves that the

The feasible seR is defined by a finite set of smooth algorithm iswell defined This means that, unless the current
algebraic equations and inequations. We assume that all thgint is stationary(generally, a solutionan iteration neces-
points of R are regular, which means that the gradients of sarily finishes in finite time obtaining a new iterate. The sec-
the active constraints are linearly independent at every feasnd step consists in showing that all the limit points of the
sible point. Under this conditiofsee Ref. 34, p. 3)4every  sequence generated by the algorithm are stationary points
local minimizer of Eq.(B1) satisfies the Karush—Kuhn- and, of course, that such limit points exist. In this way, it can
Tucker(KKT) optimality conditions. Points ifR that satisfy  be guaranteed that stationary points are necessarily found up

KKT are said to bestationary to any desired precision. Recall that, in our case, stationary
points coincide with Fock fixed points.
2. Trust-region algorithm Since Algorithm B.1 is based on Algorithm 2.1 of Ref.

22, the following results are true:

. n
OL<19}2||-'|\|/|A>%GEOte an ?f!@'tfafg norm ori”. Let a Theorem B.1. If Algorithm B.1 terminates at step 3, then
€(0,1/2), , By symmetric an xK is stationary

[Bill.<M VkeN. Proof. See Theorem 2.2 of Ref. 22. O
For allke N, let {Ay /}¢C{te R|t>0} be such that Theorem B.2. If Xis not a stationary point of Eq. (B1),

then Eq. (B3) holds fof large enough, and, so** is well
lim Ay ,=0. defined
(e Proof. See Theorem 2.3 of Ref. 22. d
(Neither the matriceB, nor the sequences of trust- For proving global convergence of Algorithm B.1 we

region radiug A ¢} .~ need to be computed in advance, putneed an additional assumption. Assumption A says that the
only at the steps of the algorithm where they are ysed. ~ seduence$Ay ¢}, . should not converge to O too fast. As a

The algorithm described below is, essentially, Algorithm consequence, a “very small” accepted trust-region radius is
2.1 of Ref. 22 with a more liberal choice of the trust-region necessarily preceded by a small trust-region radius for which
radius A, , and a stricter resolution of quadratic subprob-Ed. (B3) was not satisfied at the same iteration.

lems. Assumption A. If KKN is an infinite sequence of indices
such that
a. Algorithm B.1 )
0 lim x*=x, .
Step 1 Choosex” e R and setk«0. Ke K
Step 2 Set{ 0.
Step 3 Compute a global solutiog (A, ¢) of and
Minimize ¢ (s)= 1s'B,s+g;s Il'g:( Ak=0,
; k
subject to X*+seR, ’ (B2) then, either x is a stationary point of Eq. (B1) or
HSHAgAk,f lim Akyaccﬂ()flzo-
If ynlsk(Ak ¢)]1=0, terminate the execution of the algorithm. keK
Step 41f In Algorithm 2.1 of Ref. 22 Assumption A is guaranteed
FIX 48 (A ) I=FOX) + ayal Se( A )], (B3)  taking
define A o=Anin>0 (B5)
skzgk(Ak,f)lAszk,{ ,aCC{k)=€, and
computex***e R such that AeirelTAg e, TAxe] V€eN (B6)
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for all ke N, whereA ;>0 and O< 7<7<1. Minimize Q,«(s)
Theorem B.3. Assume that Assumption A holds{x'8t '
be a sequence generated by Algorithm B.1 and Jeb& an
limit point. Then x, is stationary sl a=II5(tx o)l
Proof. All the arguments in the proof of Theorem 3.2 of
Ref. 22 hold replacing the requiremen®5) and (B6) by
Assumption A. O

subject to xK+seR, , (B11)

Then systis a global solution of Eq. (B8) and(k ¢) is
a global solution of Eq. (B11)

Proof. For €=0 the proof is trivial. Suppose th#&t>0.
Sincesy,s is @ minimizer of Eq(B11) and3(ty ) is a fea-
sible point of Eq.(B11), we have

3. Levenberg—Marquardt-like algorithm Qv o Stue) < Qe d 3ty )] (B12)
s rust/ = s s .

The Levenberg—MarquardLM) or regularization ap- : -

proach is often used to enhance convergence properties g{"‘t’ since|suusla=<[[$(t.c)la.

unconstrained(and some constraingdninimization algo- tee T ko T

rithms based on sufficient decrease of the objective function. 5 Stus@kASrust< %~ S(ti¢) TkAS(ti ). (B13
The connections of regularization approaches with trust-

region ones are well known. See Ref. 19 and referencedding Egs.(B12) and (B13), we get

therein. Briefly speaking, regularization parameters are the te ¢

Lagrange multipliers of trust-region subproblems. In this Qx.¢(Strus? = Q.o Strus) T 7'StTrus{TkAStrust

section we define LM-like algorithms associated with the

trust-region methods of Sec. B, we prove that they have R teo. .
similar global convergence properties and we introduce the < Qu ol Stk )]+ 7'5(tk,e)T<TkAS(tk,e)
LM version of the trust-region method.
Let @e(0,1/2), O<0min<omax<®, 1<7min<Tmax<®, = Qu,e[ Stk ) ]-
andAeR"" be symmetric and positive definite. Define S0,Syu4 S a global solution of Eq(B8). For the second part
B={BeR™"B=B",|B|,<M}. of the thesis, note that, B(ty () is not a global solution of
Eq. (B11) we have
a. Algorithm B.2
Qx, ol Strust) < Q.o 8tk ¢) 1. (B14)

Step 1 Choosex’e R and setk—O0. _
Step 2 ChooseBy e B, oy e[ 0minOmad- Set€0,t,o SO, adding EqsiB13) and(B14),
=0. 2
< S(t .
Step 3 Define, for allse R", Qe (Strusd < Quc e[ St )]
That is,5(ty ) would not be a global solution of E¢B8).

Qi.e(8)=(g"Ts+ 38T (Bi+ty (o A)s. (B7)  This completes the proof. a
Step 4 Computes(ty (), a global solution of By Proposition B.1, defining
Minimize Q, ((s) subject tox*+se R. (B8) Aice=8(tk ) (B15)
If Qg ¢([5(tk ¢)]=0 terminate the execution of the algo- and

rithm. lp’k(S):kao(S) Vse Rn,
Step 5

Algorithm B.2 has exactly the same form as Algorithm B.1.
For proving that it has the same global convergence proper-
XK+ 8(ty ) ]<F(X) + aQy o[ 3ty ¢)], (B9) ties itremains to prove that, , defined by Eq(B15) is such
that, for fixedk, Ay , tends to= if € tends to infinity and that
Assumption A holds. This is done in the following two lem-

If

set acck)=1¢, ty=ty ¢, computex***e R such that

FOKT) < FIX*+3(t )], (B10) ~ mas.
Lemma B.1. Assume that, at some iteration k of Algo-
setk—k+1 and go to step 2. rithm B.2 ¢ tends to infinity andA, , is defined byEq.

If Eq. (B9) does not hold, then, =0 takety ;. ,>0. If (B15). Then
€>0, takety 11 €[ Tmintk¢» Tmaxtk c)- Set€—~€+1 and go to
step 3. O lim Ay (=0.

From now on, we define (e
Proof. Sincer,;,;>>1, the fact thatt tends to infinity implies
thatt, , tends to infinity too.

The relation between the LM-like iteration defined by Since Qi ((0)=0 and5(ty () is a global minimizer of
Algorithm B.2 and a trust-region iteration is given by the Q ((s) we have that
following proposition. -

Proposition B.1. Assume thaftg () is a solution of Eq. Qu.lS(t)]<0 VL.
(B8) and s, is a solution of So,

|zla=Vz'Az VzeR".
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(9%)T8(t o)+ 38(ti ) T(Bi+ ty ¢ 01 A) 8(ty ) <O.
Therefore,

tke0k, R
> S(ty.¢) TAS(ty ()

1
<—(g""8(ty o) - E’\S(tk,f)TBkg(tk,()

M
<llgO a8t e)llo+ = I8t ol13-

SinceR is bounded, the right-hand side of this inequality is

bounded independently of. But, sincety ;— and o,
<0 =0max, We have that

lim §(tk’€)TAAS(tk,€)=O.

{—

So, lim,_ Ay ;=0 as we wanted to prove. O
Lemma B.2. Assume théxX} is an infinite sequence

generated by Algorithm B and A, , is defined by Eq.

(B15). Then, Assumption A holds

Proof. Let K; be an infinite subset af such that

lim xk=x,
keKy

and

||m Ak: I|m Akyacc«)=0.

ke Ky ke Ky

We consider two possibilities:

(1) There exists an infinite subsk&t, CK; such thatt,
=1 acc) IS bounded.

(2) |imkEKltk:°°.

Assume first tha{tk}keK1 is bounded. Then, there exists
K3, an infinite subsequence &f,, such that

lim B+ ot A=B+ otA=B.
keKgz

Let se R" be such thak, +seR. Then, for allke K3
we have that

(9%)8(ti) + 38(t) T(Bic+ teoA)3(ty)
=(997(x, +5-x9
+ 1(x, +5— X T(B+ tyoA) (X, +5—xK).
So, taking limits fork e K5 and using that

lim [|5(t)]4= lim A=0,
keKgz keKgz

we obtain
g(x,)Ts+ 1s"Bs=0

for all se R" such thatx, +seR. Therefore, &R" is a
minimizer of g(x, ) 's+ 3s"Bs subject tox, +seR. Since

X, is regular, the KKT conditions for this problem hold and,
since these KKT conditions are the same as the KKT condi-

tions of Eq.(B1), x,, is stationary.

Francisco, Martinez, and Martinez

Now, assume that Since

< Tmadk accy—1 W€ have that

"QLKltk:OC- tk

lim ty acegy—1= -

keKq

Since Qk,tk‘accm_l(O):O and §[ty accy-1] is a global
minimizer onKtk aCCcKH(s) we have

Qk,acc(k)—1[§(tk,accd<)—l)]go Vke Ki.
So

(gk)Tg(tk,acc(k)—l) + %g(tk,acc(k)—l)-r
X (Bt ty acc) - 10kA) Sty acck) 1) <0 VkeKj.
Therefore, for alke K4,

tk acck) - 10k, R
T S(tk, acck) — 1)TAS(tk,acc(k) - 1)

s- (gk)Tg(tk,acca()—l) - %é(tk,acc(k)—1)TBk§(tk,acc(k)—1)

M
= ”g(Xk)||2||S(tk,accq<)fl)‘|2+ 7”S(tk,accq<)fl)“% '

SinceR is bounded, the right-hand side of this inequality is
bounded too. But, SiNCE sccg)—1—° aNd 0 pin<0x<Tmax,
we have that

lim 3(ty acc—1) "A(ty acogy—1) =0-
keKq

So, IinyEKlAk,acc(k)_FO as we wanted to prove. O

We proved that Algorithm B.2 is a particular case of
Algorithm B.1 and that Assumption A is satisfied. Therefore,
by Theorem B.2, the following global convergence theorem
also holds.

b. Theorem B.3

(1) If Algorithm B.2 terminates at step 4, thef is a
stationary point of Eq. (B1).

(2) If x¥ is not a stationary point of Eq. (B1), then Eq.
(B9) holds for¢ large enough, and, sa*" ! is well defined

(3) Let {x¥} be a sequence generated by Algorithm B.2.
Then {x} admits at least one limit point and every limit
point is stationary

So far, we defined a globally convergent method for
solving nonlinear programming problenj&q. (B1)] such
that all the iterates are feasible point& € R) and f(xk*1)
<f(x¥) for all k. Algorithm B.2 tends to be more easily
implementable than Algorithm 2.1 of Ref. 22 because in the
latter the feasible set of the subproblems is the intersection of
R with a trust-region ball whereas in Algorithm B.2 the fea-
sible region of the subproblems 8. However, in many
general nonlinear programming problems, even subproblem
(B8) can be very difficul{perhaps, as difficult as the original
problem. In our case, with the appropriate definitionB®f,
subproblems (B8) are easy and, so, the Levenberg—
Marquardt(LM)-like algorithm becomes attractive.
Algorithm V.1 shares the same theoretical properties of
Algorithm B.2, as stated in the following theorem.
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c. Theorem B.4 Minimize [y—(yx—0w|l> subject toYTY=1I.

(1) If Algorithm 5.1 terminates at step 4, thefi is @ [ et us write
stationary point of Eq. (1)

(2) If x¥ is not a stationary point of Eq. (1) and Zli
type(k) =2, then Eqg. (17) holds for t large enough, and, so :
x**1 is well defined zZ=Yi—0x=| - | eRKN
(3) Let {x¥} be a sequence generated by Algorithm 5.1. .
Then {x! admits at least one limit point and every limit zK

point is stationary
Proof. Algorithm 5.1 is a particular case of Algorithm B.2. and
Then, the thesis follows from Theorem B.3. O Z=(Zk,...,Z',§,) e RKXN.
Then the easy subproblem is
APPENDIX C: RESOLUTION OF THE EASY A = .
SUBPROBLEMS Minimize |[Y—2Z|2 subject toYTY=1, (B16)
In this appendix we explain why the subproblems de-Where”'||F denotes the Frobenius norm.

. . . . Assume that
scribed in Sec. IV are computationally simple. We analyze
the solution of Eq.(16) with type(k)=2. Let p=1+t. Z=U3VT

Then, the “easy” subproblenil6) is equivalent to ) I
is the SVD decomposition of. Therefore,U e RK*K and

2 NXN ; KXN ; ;
Minimize —— (g*) T(x— x5 + (x— x5 TA(x— x¥) VeR are unitary andX eR is diagonal. _Slnce
op |Q:All-=/IAQ,l[e=[|Allr , wheneveiQ, andQ, are unitary,
the easy problem is equivalent to

Minimize |UTYV—3||2 subject toYTY=1.

subject toxeR.

We perform the following change of variablesii:

y= AV Write W=UTYV. The statementy¥TY=1y and W'W
' =|y are clearly equivalent, therefore the solution of the
Consequently, problem above i& =UWV', whereW solves
—_ AL — aAl2,,k kK a—1/ L .
x=A"y, y=AK, x=A"Hy, Minimize |[W—3|2 subject to WTW=1.
Moreover, writing A solution of this problem is the diagonal matrixv
Y,=SY2X, Vi=1,..N, e R**N that has 1's on its diagonal. We will cdlkxy this
matrix for now on. So, the solutiod of Eq. (B16) is
we also have N
. Y=UI K X NV .
Yk=8V2xk Vi=1,..N. N
] Therefore, writingU=(U4,...,Ux), V=(Vq,...,Vy) we
Let us write have
k
Y1 Y1 Y=U,V]+-+UgV{.
. ' Finally, the solution of the easy subproblem is
y=| - | eRXN y=| - | eRKN, Y y p
: : X=S"1%,
Yy Y
KxN K K KXN 1A. Szabo and S. N. Ostlundjodern Quantum Chemistry: Introduction to
Y=(Yq,....YN) e R®F, Y=(Y,....YQ) e RN Advanced Eletronic Structure Theofover, New York, 1988
2W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chaon, 12974(1996.
So, the easy subproblem becomes 3p. Pulay, J. Comput. Cher8, 556 (1982.
2 4A. D. Daniels and G. E. Scuseria, Phys. Chem. Chem. Phy2173
P K\TpA—1/20\,_ oy 2 (2000.
Minimize owp (g% 'A Y=y + ”y yk”2 5M. W. Schmidt, K. K. Baldridge, J. A. Boatet al, J. Comput. Cheml4,
1347(1993.
subject toYTY=] N- 6M. J. Frisch, G. W. Trucks, H. B. Schleget al, caussiaN 03 Gaussian,
) Inc., Pittsburgh, PA, 2003.
Calling ’P. Pulay, Chem. Phys. Lett80, 461 (1991).
8R. Seeger and J. Pople, J. Chem. PI§%.265(1976.
Ge= 1 Afllzgk ga.gg/;cek, J. K. Perry, and J.-M. Langlois, Chem. Phys. L&t 189
TP 10A. D. Rabuck and G. E. Scuseria, J. Chem. Phys$), 695 (1999.
the easy subproblem is equivalent to 1R. Fournier, J. Andzelm, A. Goursot, N. Russo, and D. R. Salahub, J.
Chem. Phys93, 2919(1990.
Minimize Zﬂ(y—yk) + ||y—yk||§ subject to YTY=| N- 12y R. Saunders and I. H. Hillier, Int. J. Quantum Chem699 (1973.
o ) 137, Helgaker, P. Jorgensen, and J. Olsktolecular Electronic-Structure
This is equivalent to Theory(Wiley, New York, 2000.
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