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As far as more complex systems are being accessible for quantum chemical calculations, the
reliability of the algorithms used becomes increasingly important. Trust-region strategies comprise
a large family of optimization algorithms that incorporates both robustness and applicability for a
great variety of problems. The objective of this work is to provide a basic algorithm and an adequate
theoretical framework for the application of globally convergent trust-region methods to electronic
structure calculations. Closed shell restricted Hartree–Fock calculations are addressed as
finite-dimensional nonlinear programming problems with weighted orthogonality constraints. A
Levenberg–Marquardt-like modification of a trust-region algorithm for constrained optimization is
developed for solving this problem. It is proved that this algorithm is globally convergent. The
subproblems that ensure global convergence are easy-to-compute projections and are dependent
only on the structure of the constraints, thus being extendable to other problems. Numerical
experiments are presented, which confirm the theoretical predictions. The structure of the algorithm
is such that accelerations can be easily associated without affecting the convergence properties.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1814935#

I. INTRODUCTION

Electronic structure calculations are being used in an in-
creasingly large number of research fields. Several well-
developed computer packages are available, which provide a
large scope of algorithms and analytic tools in such a way
that it is not required that the users fully understand the
methods for obtaining valuable results. For this to happen, it
has been necessary that the algorithms involved become
faster, user-independent, and reliable. The basis of most elec-
tronic structure computations are the fast and inexpensive
self-consistent field~SCF! algorithms. The ones based on
Hartree–Fock ~HF! and Kohn–Sham density functional
theories are the most popular.1,2 Since these problems are
nonlinear, the algorithms require iterative updating of the
variables~density matrix or eigenvectors of the Fock matrix!
until self-consistency is achieved and hence a solution is
found.

The first method designed to solve the HF problem was
based on a naive fixed-point iteration that consists in the
construction of the Fock matrix from the current guess fol-
lowed by its diagonalization in order to obtain the new set of
orbitals. This method has slow and unstable convergence
properties and, thus, is no longer used for practical purposes.

However, some of the methods currently used still rely on
the fixed-point iteration in some way. Particularly, the direct
inversion of the iterative subspace method of Pulay~DIIS!
~Ref. 3! was designed to stabilize the fixed-point iterations
by an extrapolation of the Fock matrix that aims to minimize
residual vector norms. Although the DIIS method is also
used in our days in different contexts,4 it is in its original
form that it is most frequently employed.5,6

Other techniques were proposed to improve convergence
of SCF iterations.3,4,7–11 In the level-shift method~the first
algorithm claimed to have unconditional convergence
properties12! the virtual orbitals are shifted to higher ener-
gies. This method depends on a user specified parameter
which can be obtained only by trial and error.4,13The second-
order SCF method~Ref. 14! relies on an exponential param-
etrization of the energy as a function of the density matrix.
The energy minimization problem becomes unrestricted and
Newton’s method for unconstrained optimization is used.
This method has robust convergence properties, but it relies
on the availability of the Hessian, which is computationally
very expensive. Other methods based on the exponential pa-
rametrization of the energy have been proposed, but global
convergence is hard to obtain since matrix exponentials are
not computed exactly.4

Let us recall here the meaning ofglobal convergencein
ordinary optimization literature. An algorithm is said to be
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globally convergent if the sequences that it generates either
stop at a point that satisfies first-order optimality conditions
~usually calledstationary point! or have the property that all
its limit points are stationary. This property must hold inde-
pendently of the initial starting point and, as much as pos-
sible, independently of any additional property of the se-
quence. In practical terms, this means that given a small
tolerance«.0, any sequence generated by a globally con-
vergent algorithm necessarily stops at a point that satisfies
the convergence criterion defined by the tolerance. It must be
warned that, since stationary points are not necessarily global
minimizers, global convergence does not imply convergence
to the global minimum of the optimization problems.

Aiming a fully reliable, user independent method,
Cancès and Le Bris developed an optimal damping algorithm
for which they proved global convergence whenever the it-
erates satisfy auniform well-posedness~UWP! assump-
tion.15,16 Coupled with DIIS, this method provides more ro-
bust convergence than DIIS alone and preserves competitive
convergence rates.17 More recently, Thogersenet al.18 intro-
duced a trust-region method~TRSCF! for optimizing the to-
tal energyESCF of Hartree–Fock theory and Kohn–Sham
density-functional theory. Trust-region methods~see Ref. 19!
for unconstrained optimization were suggested by Powell20

in 1970. The most complete global convergence proof of the
Newton-based trust-region algorithm for unconstrained prob-
lems was given by Sorensen21 in 1982. At each iteration of a
trust-region algorithm one minimizes a quadratic approxima-
tion of the objective function on a ball centered in the current
point and defined by some~not necessarily Euclidian! dis-
tance. If the reduction of the objective function obtained in
this way is of the same order as the reduction of the quadratic
approximation, the trial point is accepted as new iterate. Oth-
erwise, the radius of the trust-region ball is reduced and the
quadratic approximation is minimized on the new restricted
region. If the gradient of the objective function at the current
point is equal to the gradient of the quadratic model and the
current point is not stationary, the iteration necessarily fin-
ishes successfully and, so, a better iterate is obtained. Ac-
cording to the degree of success of the iteration, the radius of
the next trust region is increased or decreased. Many authors
used trust region algorithms for solving minimization prob-
lems with simple constraints but, only in 1995, Martı´nez and
Santos22 gave a complete global convergence theory for fea-
sible trust-region methods with arbitrary~possibly nonlinear
and nonconvex! constraints. In Ref. 23 the same authors
completed the theory with local and convergence-rate results.

The TRSCF algorithm of Thogersenet al. exhibits very
nice practical behavior. In this algorithm the trust region at
each iteration is not defined as the intersection of a compact
ball with the feasible region~as in Ref. 22! but as the inter-
section of a linear half-space~defined in terms of the density
variables! with the feasible set. When the reduction of the
energy functionESCF is not satisfactory, the frontier of the
half-space~an hyperplane! is moved towards the current
point so that, ultimately, energy decrease is obtained. The
solution of the trust-region subproblem is always seeked on
the hyperplane and it involves the diagonalization of a level-
shift augmentation of the Fock matrix. Many implementation

details are discussed in Ref. 18. The nonstandard trust-region
approach of Ref. 18 makes it difficult to develop a rigorous
convergence proof for this algorithm. The existence of such a
proof remains a challenging open problem.

Although developed independently, the present research
is related to, and, in some sense, complements the results of
Ref. 18.

Here we introduce a new trust-region optimization algo-
rithm with proved global convergence for closed shell re-
stricted Hartree–Fock SCF iterations without UWP or re-
lated assumptions on the sequence itself. The classical fixed-
point step is naturally incorporated to its structure. The first
procedure at each iteration of the trust-region method will be
to minimize a quadratic approximation of the energy func-
tion. We give a simple proof that a solution of this subprob-
lem is given by the classical fixed-point iteration. The main
ingredient for obtaining global convergence is not the choice
of the first trial point at each iteration~which may lead to
steps that are too long to be trusted, as observed in Ref. 18!
but the choice of restricted steps after a possible failure of
the first trial. ~The first SCF trial step can even be skipped
without violating global convergence.! The restricted steps
after a possible failure of the first trial come from the mini-
mization of a new quadratic model with a simplified block-
diagonal Hessian motivated by the classical Barzilai–
Borwein or spectral choice of the steplength in numerical
optimization.24–30 We will explain in which sense this is a
Hessian approximation. The computation of this restricted
step is cheap in the sense that it requires the diagonalization
of a matrix whose dimension is of the order of the number of
occupied molecular orbitals only. A key point of our algo-
rithm is that, after each main iteration, an acceleration pro-
cedure is admissible with the sole requirement that it does
not increase the value ofESCF. In our experiments we use
DIIS as accelerating algorithm but, of course, any other ac-
celeration procedure is admissible such as, for example, the
recently proposed successful EDIIS~Ref. 17! or TRSCF
~Ref. 18! algorithms. In this sense, our algorithm may also be
interpreted as a simple way to provide global convergence to
methods that are known to be efficient in most cases. Sum-
ming up, the objective of this paper is to introduce a trust-
region algorithmic framework for SCF electronic structure
calculations with the following characteristics:

~1! Rigorous global convergence independently of the
initial point.

~2! The structure of the iterations that ensure global con-
vergence is independent of the structure of the objective
function, so this type of iterations is applicable to other prob-
lems with similar constraints.

~3! The algorithm is such that the association with other
efficient methods is straightforward.

~4! Experiments will show that, in practice, the algo-
rithm behaves as predicted by theory.

This paper is organized as follows: In Sec. II we describe
the general lines of the forthcoming trust-region algorithm
and the main features of its implementation. In Sec. III we
recall definitions and properties of the problem and we give
a simple proof that the first subproblem solved at each itera-
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tion coincides with the fixed-point iteration. In Sec. IV we
briefly describe the resolution of simple quadratic trust-
region problems and we state the fact that these solutions are
easily computed nonlinear projections. The rigorous defini-
tion of the trust-region algorithm for our problem is given in
Sec. V. In Sec. VI we describe the numerical experiments
and in Sec. VII we state conclusions and lines for future
results. The appendixes contain a rigorous convergence proof
for the algorithm and the justification for the nonlinear pro-
jection procedure used in reduced trust regions.

II. ALGORITHMIC OVERVIEW

The algorithm presented here is a trust-region method.19

The main iteration uses a quadratic approximation of the
objective function around the current iterate and minimizes
this quadratic model subject to the problem constraints~in
this case, weighted orthonormality constraints!. Once the
quadratic model is minimized, a newtrial point is obtained.
Then, we test whether the decrease of the objective function
at the trial point~actual reduction! is meaningful when com-
pared to the reduction of the quadratic model~predicted re-
duction!. Of course, the predicted reduction will be similar to
the actual reduction whenever the quadratic model is a good
approximation of the objective function. If the actual reduc-
tion is at least a given fraction of the predicted reduction, the
trial point is accepted and the trust-region iteration finishes.

The energy at the trial point obtained by the minimiza-
tion of the model may be higher~or, perhaps, not sufficiently
lower! than the energy at the current iterate. In this case, the
trial point is not accepted. Consequently, the algorithm pro-
ceeds minimizing a simple quadratic model of the energy in
a smaller trust region around the current point. This process
is repeated and, if the trust region is small enough, the de-
crease of the true energy becomes of the same order as the
decrease of the quadratic model energy.

A trust-region method for arbitrary constraints22 is com-
putationally implementable when a meaningful quadratic
model is easy to obtain, its minimum subject to the con-
straints of the problem is computable and minimizers of a
suitable quadratic model subject to the problem constraints
and smaller trust regions are also easy to compute. These
conditions may not be easily fulfilled. For example, the qua-
dratic model could be the complete second-order Taylor ex-
pansion, but this would require the computation of the Hes-
sian, which may be very costly. Moreover, it is very difficult
to compute a global minimum of the second-order Taylor
model subject to orthonormality constraints. Finally, there do
not exist practical methods for computing minimizers of ar-
bitrary quadratic models subject to problem constraintsand
trust regions.

The algorithm presented in this paper provides suitable
solutions for these difficulties. We show the following:

~1! The classical fixed-point iteration is the global mini-
mization of a meaningful quadratic model of the energy sub-
ject to orthonormality constraints. Therefore the first step at
each iteration of our trust-region method coincides with the
classical fixed-point iteration.

~2! Global minimizers of a simplified quadratic model
subject to orthonormality constraintsand a smaller trust re-

gion are easy-to-compute projections. Therefore, the itera-
tions that guarantee global convergence can be computed
accurately in reasonable time.

III. THE FIXED-POINT ITERATION AS THE SOLUTION
OF A QUADRATIC MODEL

A typical iteration of a trust-region method of the family
introduced in~Ref. 22! begins by the minimization of a qua-
dratic model of the objective function on the feasible region
under consideration. In this section we will show that, in the
case of restricted Hartree–Fock calculations, such minimiza-
tion is accomplished by the classical fixed-point iteration.

The classical definition of the Hartree–Fock problem is
as follows.1,13 Let 2N andM be the number of electrons and
nuclei in the system, respectively. We callH andS the core
Hamiltonian and overlap matrices, respectively.1

Given K, the number of functions of the basis setX is
the K3N matrix of coeficients for the expansion of the oc-
cupied molecular orbitals in terms of atomic orbitals. The
closed-shell restricted Hartree–Fock energy is given by

ESCF~X!5(
j 51

N

Xj
T@F~X!1H#Xj ,

whereF(X) is the Fock matrix@see Appendix A#.1,13

We consider the optimization problem

Minimize ESCF~X! subject to XPV,RK3N, ~1!

where V is the set of matrices ofK rows andN columns
whose columns satisfy the weighted orthonormality condi-
tions Xi

TSXj5d i j .
Suppose thatX̄PV is the current approximation to the

solution of Eq.~1!. In order to obtain an even better approxi-
mation, we are going to define aquadratic model of
ESCF(X). This quadratic model, denoted byQ(X), will be a
good approximation ofESCF(X)2ESCF(X̄) in a neighbor-
hood of X̄. We define

Q~X!54(
j 51

N

~Xj2X̄j !
TF~X̄!X̄j

1
1

2 (
j 51

N

~Xj2X̄j !
T4F~X̄!~Xj2X̄j !. ~2!

The first derivatives ofESCF(X) are

]ESCF~X!

]Xj
54F~X!Xj ~3!

and coincide with the derivatives ofQ(X) whenX5X̄. The
second derivatives ofESCF(X) are hard to compute, so they
are replaced in Eq.~2! by a simplification suggested by Eq.
~3!. The simplification comes from differentiation of both
sides of Eq.~3! using the product rule@(uv)85u8v1uv8#
and neglecting, in the product formula, the term that involves
derivatives ofF(X). Although, as pointed out in Ref. 18, this
may represent a rather rough approximation of the true Hes-
sian, very good Hessian approximations may not be neces-
sary at all in trust-region calculations due to the necessity of
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performing large steps when we are far from the solution.19

In any case, as we will see later, global convergence proper-
ties do not depend of this specific choice of the model.
Implementations of the main algorithm skipping this step are
admissible.

The SCF problem consists on finding a set of vectors
X1 ,...,XN , which are generalized eigenvectors of the Fock
matrix calculated from the same set of vectors. Thus, a solu-
tion of the SCF problem satisfies

F~X!Xj5l jSXj ; j 51,...,N. ~4!

The matrixX that fulfills this condition is called aFock fixed
point. If the generalized eigenvaluesl1 ,...,lN correspond-
ing to the eigenvectorsX1 ,...,XN are theN smallest eigen-
values ofF(X), X is called an Aufbau Fock fixed point.

The classical fixed-point iteration is suggested by the
definition of Aufbau fixed points: GivenX̄1 ,...,X̄N , one cal-
culatesX1 ,...,XN , the generalized eigenvectors correspond-
ing to the N smallest eigenvalues ofF(X̄). Therefore, we
obtainX such thatF(X̄)Xj5l jSXj for all j 51,...,N.

Given a current iterateX̄PV, the first step of our trust-
region algorithm will consist on the minimization of the qua-
dratic approximation~2! on the feasible setV. Now, we give
a simple proof that this model minimization corresponds to a
fixed-point iteration.

Theorem 3.1. Assume that XP̄V, and XFP, the matrix of
the eigenvectors corresponding to the N smallest generalized

eigenvalues of F(X̄), is the fixed-point iterate. Then XFP is a
global solution of

Minimize Q~X! subject to XPV. ~5!

Proof. By Theorem 1.2 of Ref. 31, the fixed-point iterate
XFP solves the problem

Minimize (
i 51

N

2Xi
TF~X̄!Xi subject to XPV. ~6!

The objective function of Eq.~6! is quadratic and direct
calculation shows that it has the same first and second de-
rivatives asQ(X) at the current pointX̄. Therefore, the dif-
ference betweenQ(X) and the objective function of Eq.~6!
is a constant. This implies that Eqs.~5! and~6! are equivalent
problems. So, the fixed-point iterateXFP is a solution of Eq.
~5!, as we wanted to prove. h

IV. MINIMIZING A QUADRATIC MODEL
ON A SMALLER TRUST REGION

If the trial point XFP computed by the fixed-point itera-
tion is such thatESCF(XFP) is sufficiently smaller than the
energy at the current pointESCF(X̄) thenXFP ~or, perhaps, an
accelerated step! will be accepted as the new iterate of the
trust-region algorithm. If this is not the case, a quadratic
model ofESCF(X) must be minimized on the intersection of
the feasible setV with a suitable trust region. If the energy at
the solution of the new subproblem is sufficiently smaller
than ESCF(X̄) then this solution~or an accelerated point! is
accepted. Otherwise, the trust region is reduced again, and
so on.

Consider the case in whichESCF(XFP) is notsufficiently
smaller thanESCF(X̄). In principle, we could minimize the
same quadratic modelQ(X) on the intersection of the fea-
sible regionV and a suitably small trust region. However, we
have two strong reasons for proceeding in a different way.
On one hand, the fact thatXFP failed to produce a good
decrease of the energy makes one think that the model is not
good enough for approximating the energy at this point, per-
haps because the Hessian approximation is not good or be-
cause higher order terms are dominant. On the other hand,
although minimizingQ(X) on V is straightforward, mini-
mizing this quadratic on the intersection ofV with a trust
region is not simple at all. Let us recall that, in the classical
framework of trust-region methods, a trust region of radiusr
is defined as the set of points whose distance to the current
iterate is less than or equal tor . In other words, a trust region
is a ball, although not necessarily defined by the Euclidian
distance.

Minimizing a quadratic model on the intersection ofV
with a trust region might be very difficult. However, we will
define the new quadratic model and the new trust region
radius in such a way that this solution is simple. The new
quadratic model has the same first derivatives as the one
defined by Eq.~2! but its second derivatives are different. Its
definition is

Qnew~X!54(
j 51

N

~Xj2X̄j !
TF~X̄!X̄j

1
1

2 (
j 51

N

~Xj2X̄j !
T@s̄S#~Xj2X̄j !. ~7!

The first-order terms ofQnew are the same as the ones of
Q but the second-order terms are different. In the Hessian
approximation used in Eq.~7! the matrix 4F(X̄) @used in Eq.
~2!# is replaced by theK3K matrix s̄S.

In Eq. ~7!, the scalar s̄ is the so-called spectral
coefficient,24–30 the effect of which is that the matrix of sec-
ond derivatives of the model is a simple approximation of
the true Hessian ofESCF(X̄). After the definition of Algo-
rithm 5.1, with a more adequate notation, we will state the
reasons why the Hessian of Eq.~7! is really a suitable Hes-
sian approximation.25,28,30Roughly speaking, the Hessian ap-
proximation in Eq.~7! is the multiple of the matrix with
diagonal blocksS which is closest to the true Hessian.

Even the minimization of Eq.~7! on the intersection of
V and a given trust region might be difficult. For overcoming
this difficulty, instead of minimizing explicitly the function
Qnew restricted to the trust region, we perform this task in an
implicit way. Namely, we minimize the sum ofQnew and a
penalty term of the form (t/2) ( j 51

N s̄(Xj2X̄j )
TS(Xj2X̄j )

on the feasible setV without the explicit trust-region con-
straint. Fortunately, increasingt has the same effect as de-
creasing the trust-region radius. This process is illustrated in
Fig. 1. In Fig. 1~a! we show, schematically, the rejected trial
point XFP and the result of solving Eq.~8! for t50 @mini-
mizer of Eq. ~7! on V]. The centerO of the level sets of
Qnew is the minimizer ofQnew without the constraintsV and
can be obtained trivially solving a linear system. In Fig. 1~a!
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we assume, further, that the trial point obtained witht50 has
been rejected@because its energy is not sufficiently smaller
than ESCF(X̄)] and, so,Qnew needs to be minimized on the
intersection ofV with a smaller trust region. The way in
which this new trial point is obtained is shown in Fig. 1~b!.
The new trust-region radius is not considered explicitly. In-
stead, a point in the segment that joins the unconstrained
minimizer ofQnew andX̄ is computed and the new trial point
is its projection onV.

The trust-region subproblem is then

Minimize 4(
j 51

N

~Xj2X̄j !
TF~X̄!X̄j1

1

2 (
j 51

N

~Xj2X̄j !
T

3@~11t !s̄S#~Xj2X̄j ! subject to XPV ~8!

and the algorithm sketched in Fig. 1 for solving this problem
is given below.

Recall that the symmetric matrixS admits a diagonaliza-
tion,

S5USSSUS
T ,

whereUS is unitary ~square with orthonormal columns and
rows!, its columns are eigenvectors ofS, andSS is the di-
agonal matrix whose entries are the eigenvalues ofS. Since
the eigenvalues are positive, we may define the square root
of S,

S1/25USSS
1/2US

T .

Consequently, we defineS21/25@S1/2#21. Moreover, anyK
3N matrix Z admits a~reduced! singular value decomposi-
tion of the form

Z5UZSZVZ
T ,

where UZ and VZ are K3N and N3N matrices, respec-
tively, with orthonormal columns andSZ is a diagonalN

3N matrix. This decomposition can be easily computed
starting from the diagonalization of theN3N matrix ZTZ,
although more efficient methods exist.32

The procedure for computing the solution of Eq.~8! is
described below in such a way that a computer code can be
easily written. The justification to this procedure is given in
Appendix C.

~1! Compute

Z̄5S S1/22
4

s̄~11t !
S21/2F~X̄! D X̄.

~2! ComputeŪ and V̄ from the reduced singular value
decomposition ofZ̄,

Z̄5ŪSV̄T. ~9!

~3! Compute the solution of~8! as

X5S21/2ŪV̄T.

V. FULL ALGORITHMIC DESCRIPTION

The main ingredients of the new algorithm for solving
Eq. ~1! were given in the preceding sections. In this section
we give a more precise description of our method and we
state its theoretical convergence properties.

A. Nonlinear programming problem

Let us express Eq.~1! as an optimization problem with
vectors~instead of matrices! as unknowns. Definen5KN.
For all XPRK3N, X5(X1 ,...,XN), we define the vector
vec(X)PRKN by

vec~X!5S X1

•

•

•

XN

D .

Consequently, we definef @vec(X)#5ESCF(X). Moreover,R
will be the set of points inRn such that the corresponding
K3N matrix is inV. Then, the problem~1! can be written as

Minimize f ~x! subject to xPR,Rn. ~10!

In other words, the problem~10! is exactly the same as
the problem~1!, where the matricial variablesX are replaced
by vectorial variablesx.

The setR is compact~closed and bounded!. Closedness
means that limit points of sequences completely contained in
R necessarily belong toR. This property is essential when
one discusses convergence of iterative methods since one
wants to guarantee that, when a sequence is completely con-
tained in the feasible set~V or R in this case! its limit points
also belong to this set. The closedness ofR comes from the
fact that the constraints that defineV are equations and non-
strict ~‘‘less-than-or-equal-to’’! inequalities. The feasible set
is also bounded because the constraintsXj

TSXj51 are
bounded ellipsoids inRK. Compactness~closedness plus
boundedness! implies that every sequence completely con-
tained inR admits at least one limit point that belongs toR.
In the convergence theory we prove that every limit point is

FIG. 1. The solution of the easy subproblems after the first rejected trial
point. ~a! The new trial point must be the minimizerQnew on a smaller trust

region. ~b! This new trial point is obtained projecting (X̄1O)/2 on the
feasible setV.
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stationary. So, since limit points exist, we will be able to
conclude that the algorithm finds, ultimately, stationary
points. Geometric insight on the feasible setV and on New-
ton and conjugate-gradient algorithms for minimization with
this type of constraints has been given in Ref. 33.

Every local minimizer of Eq.~1! must satisfy the
Lagrange optimality conditions.34 This is because all the
points inR areregular in the sense that the gradients of the
constraints are linearly independent. As usually, points that
satisfy the optimality conditions are said to bestationary.
Stationary points can be transformed into Fock fixed points
by multiplication by an unitaryN3N matrix.13

B. Nonlinear programming algorithm

Here we define our trust-region method for solving Eq.
~1!. The iterates of the algorithm will be calledXk and the
corresponding points vec(Xk)PRn will be denotedxk. More-
over, givenXPRK3N we denotex5vec(X).

By Eq. ~3!, we have

¹ f ~x!5vec@4F~X!X#

and

gk5vec@4F~Xk!Xk# for all k.

We defineAPRn3n andHkPRn3n by

A5F S

�

S
G , Hk5F 4F~Xk!

�

4F~Xk!
G .

~11!

Therefore,A andHk areN-block-diagonal matrices with
K3K blocks.

At some iterations we will useHk as Hessian approxi-
mation, which corresponds to use the quadratic modelQ(X).
At other iterations we use the Hessian approximationskA,
where sk is the spectral parameter mentioned before, and
corresponds to use the ‘‘easy’’ quadratic modelQnew(X). We
already know how to solve the subproblems associated to
each quadratic model. Iterations whereHk is the Hessian
approximation will be said to be oftype 1. Reciprocally, the
iterations where the Hessian approximation isskA are said
to be of type 2. Iterations of types 1 and 2 can be chosen in
two basic ways:

~1! At its beginning, each iteration is always of type 1.
This means that the modelQ(X) is used. If XFP is good
enough, then this point~or an accelerated one! is accepted as
a new iterate. On the contrary, ifE(XFP) is not sufficiently
smaller than the energy at the current point, the iteration is
changed to be of type 2. This scheme corresponds essentially
to the process sketched in previous sections when we defined
Q and Qnew. It corresponds to choose type(0)51 and
type(k)51 in Eqs.~12! and ~19! below.

~2! In an alternative version of the algorithm all the it-
erations may be of type 2. This corresponds to choose
type(0)52 and type(k)52 in Eqs.~12! and ~19! below.

Algorithm 5.1 is stated in such a general way that other
strategies are possible to choose the type of each iteration.
For example, if iterations of type 1 systematically fail we

may decide not to use them anymore, choosing always
type(k)52. The numerical experiments will correspond to
the first strategy described above.

1. Algorithm 5.1

Step 1. ChooseaP(0,1/2), 0,smin,smax,` and the initial
approximation X0PV @so, x05vec(X0)PR]. Set k←0,
s051. Choose

type~0!P$1,2%. ~12!

Step 2.
If type(k)51, defineBk5Hk .
If type(k)52 andk.0, computesk , the spectral scal-

ing parameter,26,28 by

sk5maxHsmin ,minH smax,
~xk2xk21!T~gk2gk21!

~xk2xk21!TA~xk2xk21!J J
~13!

and

Bk5skA. ~14!

Step 3. Sett←0.

Step 4. Define

Qk,t~x!5~gk!T~x2xk!1 1
2 ~x2xk!T@Bk1tskA#~x2xk!.

~15!

Computextrial , a global solution of

Minimize Qk,t~x! subject to xPR. ~16!

If Qk,t(xtrial)50, terminate the execution of the algo-
rithm declaring thatxk (Xk) is stationary.

Step 5.
~1! If

f ~xtrial!< f ~xk!1aQk,0~xtrial!, ~17!

computexk11PR such that

f ~xk11!< f ~xtrial!, ~18!

setk←k11, choose

type~k!P$1,2%, ~19!

and go to step 2.

If Eq. ~17! does not hold, then

~1! If type(k)51, redefine type(k)52, and go to
step 2.

~2! If type(k)52, sett←max$1,2t%, and go to step 4.h

Algorithm 5.1 has been described in such a way that its
implementation using the results on the solution of subprob-
lems~Secs. III and IV! is not difficult. However, some addi-
tional explanation is necessary in order to make it more
friendly.

~a! The requirement~17! states that theactual reduction
f (xk)2 f (xtrial) should be, at least, a fractiona of the pre-
dicted reduction2Qk,0(xtrial). According to Eq.~15!, one is
using the approximation
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f ~x!' f ~xk!1~gk!T~x2xk!1 1
2 ~x2xk!TBk~x2xk!

5 f ~xk!1Qk,0~x!.

Observe thatQk,0(x
k)50. Since this approximation is correct

up to the first-order terms, it is justified to require that the
reduction of the true objective function should be of the
same order as the reduction of the quadratic model. The pa-
rametera quantifies the degree of agreement between both
reductions. The first-order coincidence guarantees that, un-
lessxk is a stationary point, the condition~17! will hold if
xtrial is close enough toxk. The distance between the trial
point xtrial and the current pointxk is controlled by the trust-
region radius in classical trust-region methods and by the
regularizing parametert in Algorithm 5.1.

~b! At iterations of type 2 the Hessian approximation is
skA. This matrix is the multiple ofA which, in some sense,
is closest to the true HessianH f(x

k). Roughly speaking, we
have

gk2gk21'H f~xk!~xk2xk21!,

so, premultiplying by (xk2xk21)T, we obtain

~xk2xk21!T~gk2gk21!'~xk2xk21!TH f~xk!~xk2xk21!.

Dividing by (xk2xk21)TA(xk2xk21), we get

~xk2xk21!T~gk2gk21!

~xk2xk21!TA~xk2xk21!

'
~xk2xk21!TH f~xk!~xk2xk21!

~xk2xk21!TA~xk2xk21!
. ~20!

Making the ~obviously wrong! simplification of the terms
(xk2xk21)T and (xk2xk21) on the right-hand side of Eq.
~20! we obtain

H f~xk!'
~xk2xk21!T~gk2gk21!

~xk2xk21!TA~xk2xk21!
A.

This justifies the choice~13! except for the fact that, to pre-
vent numerical instabilities, we require that the coefficientsk

should belong to the closed interval@smin , smax#. In turn,
smin andsmax are parameters given by the user. If the quo-
tient (xk2xk21)T(gk2gk21)/(xk2xk21)TA(xk2xk21) lies
outside the interval@smin , smax#, formula ~13! forcessk to
be one of the extremes of this interval. A more careful mo-
tivation of the spectral coefficient based on mean-value ar-
guments~21! is given below.

~c! At iterations of type 1, the solution of the subproblem
~16! is given by the fixed-point iteration. At iterations of type
2 the solution of the subproblem is given by the procedure
described in Sec. IV. When the actual reduction defined by
the trial point is not enough, the value oft is increased.~The
new t is set to be equal to the maximum between 1 and 2t at
the end of step 5.! The effect of increasingt is the same as
the effect of reducing the trust-region radius.

~d! When the trial point~coming from any type of itera-
tion! satisfies the sufficient descent condition~17!, the new
iterate may be any point satisfying Eq.~18!. Clearly, the
choicexk115xtrial is admissible, sincex5xtrial obviously sat-
isfies Eq.~18!. However, the weak requirement~18! allows
one to choosexk11 by means of acceleration procedures

such as DIIS, or even TRSCF. By Eq.~18!, the energy at the
accelerated point only needs to be not greater than the energy
at the trial point. The convergence proofs are not affected at
all by the specific choice ofxk11, provided that the condition
~18! is satisfied.

~e! If Qk,t(xtrial)50 after solving Eq.~16! then, since
Qk,t(x

k)50, it turns out thatxk is a global solution of Eq.
~16!. Then,xk satisfies the Lagrange optimality conditions of
Eq. ~16!. But these conditions are exactly the Lagrange op-
timality conditions of the original problem~10! due to the
fact that the first-order terms off and Qk,t are the same.
Therefore,xk is a stationary point, which justifies terminat-
ing the execution of the algorithm in this case.

In subproblems of type 2 the Hessian approximation is
defined by Eqs.~11!, ~13!, and~14!. Let us give here a more
careful argument to show that Eq.~14! in fact defines a Hes-
sian approximation. Let us recall28 the mean-value formula

~xk2xk21!T~gk2gk21!

5~xk2xk21!TF E
0

1

H f [x
k211v~xk2xk21!Gdv

3~xk2xk21!, ~21!

where, as above,H f(x) denotes the Hessian off . Therefore,
the coefficientsk is the factor by which it is necessary to
multiply the matrixA to become similar to theaverage Hes-
sian †*0

1H f@xk211v(xk2xk21#dv‡. This is exactly what we
do in Eq. ~14!. Rigorous analysis of methods exclusively
based on this approximation may be found in Refs. 25,
26, 28.

C. Convergence

In Appendix B we prove that Algorithm 5.1 is globally
convergent without any additional assumption on the gener-
ated sequence$Xk%. This means the following:

~1! The algorithm terminates at an iterationk only if Xk

is a stationary point.~Therefore, a set ofN generalized
eigenvectors can be immediately obtained fromXk.)

~2! The iterations of Algorithm 5.1 are well defined in
the sense that each iteration necessarily finishes in finite time
if Xk is not stationary.

~3! Any sequence generated by Algorithm 5.1 necessar-
ily admits limit points and all the limit points are stationary.
Therefore, approximate Fock fixed points can be obtained up
to any desired precision.

Reading the steps of Algorithm 5.1, we observe that the
algorithm terminates at an iterationk only when, at that it-
eration,Qk,t(xtrial)50. In this case, as we mentioned before,
Qk,t(x

k)50 and, so,xk is a global minimizer of the subprob-
lem ~16! and satisfies the Lagrange optimality conditions. Of
course, in computer implementations, a more tolerant stop-
ping criterion is used.

Let us state now the main ingredients of the proof that
the algorithm is well defined and globally convergent. Rig-
orous mathematical details are given in Appendix B. We say
than an algorithm is well defined when each iteration neces-
sarily finishes; that is, infinite loops within a particular itera-
tion cannot occur. We only need to consider the case in
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which the iteratexk is not a stationary point. In this case,xk

is not a stationary point of the quadraticQk,t either. There-
fore, sincextrial is a global minimizer ofQk,t and Qk,t(x

k)
50, we have thatQk,t(xtrial) is negative for allt>0. Then,
by the definition~15!, Qk,0(xtrial) is always negative. But the
first-order terms ofQk,0(x) are the same as the first-order
terms of f (x)2 f (xk), therefore the fact thatQk,0(xtrial) is
negative forces thatf (x)2 f (xk) is also negative~with the
same order of its linear and quadratic approximations! if xtrial

is close enough toxk. Since the effect of the penalty regu-
larizing parametert is to reduce the distance betweenxtrial

and xk, it turns out that, fort large enough, the sufficient
descent condition~17! necessarily holds. This means that the
iteration will finish after increasingt a finite number of
times.

Now let us give the main ideas of the global conver-
gence proof. Note that the existence of limit points is guar-
anteed by the compactness ofR, so it must only be justified
the fact that every limit point is stationary.

In Proposition B.1 we will prove that the subproblem
~16! is equivalent to the following trust-region subproblem

Minimize Qk,0~x! subject to xPR,

and

~x2xk!TA~x2xk!<D

for an adequate trust-region radiusD that depends ont.
Whent is increased,D decreases andD tends to zero whent
tends to infinity. The restriction (x2xk)TA(x2xk)<D is a
typical trust-region constraint in the sense that it defines a
ball with respect to the distance defined by the matrixA.
~Balls with respect to this distance are ellipsoids inRn.) Due
to this equivalence, the convergence theory of the algorithm
is essentially reduced to the theory of convergence of trust-
region methods on arbitrary domains given in Ref. 22. Sev-
eral technical aspects of this equivalence are given in Appen-
dix B.

The main ideas in the theory of convergence of trust-
region methods in arbitrary domains22 are the following:

~1! At each iteration a quadratic model of the objective
function is minimized on the intersection of a~not necessar-
ily Euclidian! ball and the feasible region. The initial trust-
region radius at each iteration must be greater than a fixed
radiusDmin . If the trial point so far obtained is such that the
decrease of the objective function is proportional to the de-
crease of the quadratic model, the trial point is accepted as
new iterate. Otherwise, the trust-region radius is decreased.
For global convergence it is essential that the amount of
actual decrease must be proportional to the decrease of the
quadratic model. The fact thatf (xk11), f (xk) is not enough
to guarantee convergence to stationary points since the se-
quence might approach indefinitely to a nonstationary point
in spite of monotone decrease of the objective function.

~2! For proving global convergence, an arbitrary se-
quence of iterates generated by the algorithm is considered.
We deal with the theoretical case where there is no tolerance
for the detection of a stationary point. In such a case, either
the sequence stops abruptly when a stationary point isex-
actly found or the sequence has infinitely many terms. We

want to prove that the limit point of any convergent subse-
quence, which we callx* , must be a stationary point. Recall
that for each accepted pointxk belonging to the sequence,
there exists a final trust-region radiusDk and, therefore, there
is also a sequence of accepted trust-region radii associated
with the subsequence of iterates under consideration. Let us
assume, by contradiction, that the limit pointx* is not sta-
tionary. There are two possibilities for the trust-region radii
sequence:

~a! The trust-region radiusDk tends to zero: The initial
trust-region radius of each iteration is greater than a fixed
quantityDmin . Therefore, if the accepted trust-region radius
Dk tends to zero, there exists also a sequence of nonaccepted
trust-region radii that tends to zero. This means that even for
arbitrarily small trust-regions, the actual reduction of the ob-
jective function would still be too small when compared to
the predicted reduction of the quadratic model. This is im-
possible ifx* is not stationary, since the actual and predicted
reductions must be similiar for very small trust region radii
~the quotient between them must converge to one!.

~b! A subsequence of trust-region radiusDk is bounded
away from zero: Recall that the predicted reduction of the
quadratic model around a nonstationary point is positive
whenever the trust-region is greater than zero. Furthermore,
the algorithm requires a constant proportionality between the
actual reduction and the predicted reduction in order to ac-
cept a trial point. Therefore, the actual reduction of the ob-
jective function must also be positive for an iterate to be
accepted. Then, since the subsequence of trust-region radii is
bounded away from zero, the predicted and actual reductions
are also positive and bounded away from zero infinitely
many times. This implies that the objective function value
tends to2`, which is impossible since we assumed that the
sequence tends tox* and, then, the function value must tend
to f (x* ).

Hence, we have that both alternatives~a! and ~b! are
false. This is a contradiction that raised from the assumption
that x* is not stationary. Therefore, any limit point of a se-
quence of iterate s generated by this algorithm must be sta-
tionary.

VI. NUMERICAL EXPERIMENTS

The ~unaccelerated! GTR ~global trust-region! method is
given by Algorithm 5.1 with the choicexk115xtrial in Eq.
~18!. In the accelerated version of the algorithm we take
advantage of the freedom implicit in Eq.~18! and we choose
xk11 as an accelerated step that uses the previous iterates to
improvextrial minimizing a residual approximation on an ap-
propriate subspace. In the experiments, we incorporate the
DIIS acceleration scheme to the basic structure of GTR. The
resulting algorithm will be called GTR1DIIS. As stated in
Sec. V and proved in Appendix B, the theoretical conver-
gence properties of GTR and GTR1DIIS are the same. In
both cases limit points are~not necessarily Aufbau! Fock
fixed points and the tendency to converge to Aufbau points
comes from the fact that the first step of each iteration is the
classical fixed-point iteration.

In GTR1DIIS the acceleration is used from the second
iteration on. Therefore, the first extrapolation uses two re-
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siduals. In the subsequent iterations the number of interpo-
lating residuals is increased up to a maximum of 10. From
then on, ten residuals are used. Moreover, residuals that cor-
respond to points where energy increases are discarded for
extrapolation purposes.

The classical fixed-point method will be called FP and
its acceleration using DIIS~with the same number of residu-
als as GTR1DIIS) will be called, simply, DIIS.

The algorithmic parameters used weresmin50.01,
smax5100, s050.5, and a51024. The algorithms were
stopped when the relative difference between two consecu-
tive energies was smaller than 1029.

We used different types of initial points: diagonalized
core HamiltoniansH, Huckel guesses provided by the
GAMESS~Ref. 5! package for the same problem and~in some
cases! the initial approximation induced by the Identity ma-
trix is employed. These different initial approximations were
chosen because they can be easily reproduced.

We used, for our tests, molecules with the geometries
specified in Table I. The molecules CrC and Cr2 are known
as having unstable convergence properties.4,15,17Two CO ge-

ometries were chosen as examples since it is known that
distorted geometries cause convergence difficulties.13 Fi-
nally, water and ammonia examples were introduced to illus-
trate how the trust-region algorithm behaves in situations
where the classical algorithms are successful.

A. Results

Table II shows that the number of iterations performed
by FP and GTR on one side, and by DIIS and GTR1DIIS on
the other side are the same for the water and ammonia ex-
amples. This is due to the fact that both the fixed-point itera-
tions and the DIIS extrapolations are always successful in
providing new trial points with a significantly lower energy.
In that case, the reduction of the trust region is never needed
and therefore the trust-region algorithms behave exactly as
the supporting methods.

For the CO molecule with a STO-3G basis the classical
FP method always fails to converge. The energy oscillates
until the maximum number of iterations~5001! is achieved.
For this example the DIIS method is very efficient, converg-
ing from any initial point in at most 11 iterations. The GTR
method also converges in all cases, as expected, but it takes
almost twice the number of iterations as DIIS and converges
to a solution that does not satisfy the Aufbau principle when
the initial point was derived from the Identity matrix. Finally,
the accelerated GTR1DIIS method converges rapidly and
with a few less iterations than DIIS, always to solutions that
satisfy the Aufbau principle. In the distorted CO molecule
the robustness of the trust-region algorithms becomes better
illustrated. The FP method fails to converge in all cases. The
DIIS method converges in 117 iterations to a point higher in
energy than the solution found in 12 and 10 iterations by the

TABLE I. Geometry parameters of the molecules used in the examples.

Molecule

Geometry

Bond length~Å! Angle Dihedral

CrC 2.00
Cr2 2.00
CO 1.40
CO~Dist! 2.80
H2O 0.95~OH! 109°(HOH)
NH3 1.008~NH! 109°(HNH) 120°(HNHH)

TABLE II. Number of iterations performed by each algorithm in some test problems. FP: classical fixed-point
algorithm; DIIS: the DIIS acceleration of Pulay; GTR: the global trust-region algorithm without acceleration;
GTR1DIIS: the new trust-region algorithm accelerated by DIIS.

Molecule Basis Initial point

Algorithm

FP DIIS GTR GTR1DIIS

H2O STO-3G Hcore 7 5 7 5
6-31G Hcore 18 8 18 8

NH3 STO-3G Hcore 8 7 8 7
6-31G Hcore 14 7 14 7

CO STO-3G Hcore Xa 11 22 10
Huckel Xa 7 16 7
Identity Xa 11 17b,c 9

CO~Dist! STO-3G Hcore Xa 117c 12 10
Huckel Xa 85 13 15

6-31G Hcore Xa 27c 158 115
Huckel Xa 36c 384 59

Cr2 STO-3G Hcore 52c 13 56 38
Huckel 12c 33c 398 134
Identity 7c 37 50c 26c

CrC STO-3G Hcore Xa Xa 71b,c 29
Huckel Xa 49 129 23
Identity Xa 180 40c 36

6-31G Hcore Xa 19 102c 29c

Huckel Xa 52c 113c 37

aNo convergence in 5001 iterations.
bConverged to a point with Aufbau principle violation.
cConverged to a higher energy than some of the other algorithms.
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GTR and GTR1DIIS methods respectively when a STO-3G
basis is used from a core Hamiltonian initial approximation.
Using the Huckel approximation, DIIS converges to the low-
est energy solution, but it takes 85 iterations against 13 and
15 iterations taken by GTR and GTR1DIIS, respectively.
Finally, when using a larger 6-31G basis, DIIS converges fast
but to points higher in energy than the ones obtained by the
trust-region algorithms. We observe that the GTR method
takes 384 iterations to converge from the Huckel initial ap-
proximation because its basic first-trial step is the classical
fixed-point iteration which systematically fails for this prob-
lem.

For the Cr2 molecule the DIIS method was more suc-
cessful than the trust-region methods. We obtained conver-
gence of all the instances, but the FP method converged to a
point that lies 9.3 a.u. higher in energy than the solution
found by the DIIS method. The differences in energy for the
other solutions are of the order of 531026 a.u. In these
cases, the DIIS method converged in at most 37 iterations
whereas 398 and 134 iterations were needed to achieve con-
vergence for the GTR and GTR1DIIS methods respectively
from the Huckel guess.

Finally, a very interesting test was provided by the CrC
molecule. For the 6-31G basis, all but the FP methods con-
verged. DIIS used fewer iterations when starting from the
core Hamiltonian but more iterations than GTR1DIIS when
starting from the Huckel guess. The pure GTR method em-
ployed significantly more iterations than both methods in all
cases, and converged to a solution slightly higher in energy.

When using the STO-3G basis, the tests were more in-
teresting and the results are highlighted in Fig. 2. Starting
from the core Hamiltonian both FP and DIIS failed to con-
verge, as can be seen in Fig. 2~a!. The GTR method con-
verged in 71 iterations to a higher-energy solution that does
not satisfy the Aufbau principle and the GTR1DIIS method
converged in 29 iterations to the lowest energy Aufbau solu-
tion. From the Huckel guess DIIS converged but not as fast
as GTR1DIIS whereas GTR converged in significantly
more iterations. See Fig. 2~b!. Finally, from the Identity
guess, DIIS oscillates at the beginning and stops oscillating
probably thanks to numerical rounding errors. DIIS finally
converges in 180 iterations, as shown in Fig. 2~c!. GTR con-
verges in 40 iterations to a solution higher in energy and
GTR1DIIS method converges to the lowest energy solution
in 36 iterations. This is an interesting example where the
DIIS method fails to converge from one initial point while
trust-region methods are successful.

It is worthwhile to highlight that the FP method fails to
converge in 12 of 19 tests whereas the pure GTR method
converged in all cases in spite of the fact that the first trial
point computed at each iteration is identical to the fixed-
point iteration. This fact illustrates the robustness of the
trust-region strategy.

We note that for each iteration of the trust-region meth-
ods, more than one functional evaluation is needed when it is
necessary to reduce the trust region. For this reason, in criti-
cal cases a small number of iterations of the trust-region
method does not necessarily reflects a small computer time.
However, since increasingly efficient linear-scaling proce-

dures are continuously being developed for building Fock-
matrices, reliability issues become more and more
important.17,35 We claim that trust-region methods as the
ones introduced here could be used as an automatic alterna-
tive to provide convergence for difficult problems when di-
vergence or oscillatory behaviors are detected in other algo-
rithms.

VII. CONCLUSIONS

We introduced a new trust-region algorithm for perform-
ing closed shell restricted Hartree–Fock electronic structure
calculations. Global convergence was proved without any
assumption on the sequence of iterates, thus showing that
convergence must take place from any initial point. The
method is also independent of any user-specified parameter.
The trust-region method so far introduced uses the structure
of the RHF problem to define the first trial point at each
iteration, although this fact is not essential for global conver-
gence properties. If the user choosestype(k)52 for all k
when running Algorithm 5.1, a globally convergent algo-
rithm is also obtained. The resolution of the subproblems
associated with the reduction of the trust region are easy-to-
compute projections. Due to these algorithmic features, the
trust-region method is implementable. Numerical experi-
ments show that the method is robust and behaves as pre-
dicted by theory. Convergence is obtained in all the examples
in spite of the fact that the naive fixed-point iteration is used
as the first step of the trust-region iteration. The new method
may be very useful when convergence failures of other algo-

FIG. 2. Convergence behavior of the four methods for the CrC molecule
using the STO-3G basis.
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rithms are detected thus providing reliability for routine RHF
calculations. Any heuristic, case-oriented, nonconvergent or
weakly convergent though efficient method may be used at
the acceleration phase of our algorithmic framework without
affecting the global convergence properties. In this sense, the
GTR approach may also be interpreted, not as a competitor
of other methods but a safeguarding procedure for guaran-
teeing global convergence. We showed that its association
with DIIS is profitable and, certainly, we expect that its hy-
bridization with other methods~especially those that produce
feasible iterates, as TRSCF! may be efficient. This is a very
important feature when one deals with systems with complex
wave-functions.

A particular case of Algorithm 5.1 consists in taking
type(k)52 for all the iterationsk. In this simplified version
the Hessian approximations are always chosen asBk5skA.
As a consequence, the subproblems~16! can always be
solved using the~cheap! technique described in Sec. IV. The
interesting fact about this version of the algorithm is that its
implementation does not depend at all on the form of the
objective functionf (x). In other words, it can be applied
without modifications to any problem with weighted ortho-
normality constraints. Therefore, the algorithm may be appli-
cable to unrestricted Hartree–Fock, configuration interaction,
density functional theory and semiempirical methods without
major modifications. Moreover, the dependence of Algorithm
5.1 with respect to the form of the constraints lies on the fact
that we have a reliable method for solving the subproblems
~16!. The algorithm may also be applied to other types of
constraints, provided that good methods for solving the sub-
problems are available.

We believe that the efficiency of the algorithm of
Thogersenet al.18 and the robustness and theoretical frame-
work of our GTR approach provide a great support to the
implementation and further development of trust-region
strategies for electronic structure calculations.
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APPENDIX A: DEFINITIONS AND NOTATION

1. The Fock matrix

Given the definitions ofN and M given in Sec. III the
precise dependence of the Fock matrix with respect toX is as
follows:1,13 Let $g1 ,...,gK%,C2(R3) be a set of linearly in-
dependent functions~the basis set!, with K>N. We assume
that, for allm,n,s,lP$1,...,K%, the following quantities are
well defined:

~mnusl!5E
R3
E

R3
gm~r 1!gn~r 1!

1

ir 12r 2i

3gs~r 2!gl~r 2!dr1dr2 .

We define, for allm, n, s, l,

Bmn
sl52~mnusl!2~mlusn!.

For all XPRK3N (X5(Xi j )) we defineG(X)PRK3K by

G~X!mn5 (
b51

N

(
s,l51

K

Bmn
slXsbXlb for all m,n51,...,K.

The Fock matrixF(X)PRK3K is given by

F~X!5H1G~X!, ~A1!

whereH is the core Hamiltonian matrix with elements

Hmn5E
R3

gm~r !@h~gn!~r !#dr,

and the core Hamiltonian operatorh is given by

h~w!~r !52
1

2
¹2w~r !2(

j 51

M
Zj

ir 2 r̄ j i
w~r !.

2. Notation

~1! If f is a real-valued function ofn variables, we de-
noteg(x)5“ f (x) andgk5g(xk) for xPRn, xkPRn.

~2! C2(R3): the set of twice continuously differentiable
functionsw:R3→R.

~3! The transpose of a real matrixA will be denotedAT.
The identity matrix will be denotedI . The Frobenius norm
of A is denotediAiF .

~4! A square matrixC will be said unitary if CTC
5CCT5I .

~5! d i j denotes the Kroenecker symbol. (d i j 51 if i 5 j , 0
otherwise.!

~6! If X5(X1 ,...,XN)PRK3N and j P$1,...,N%, we de-
fine

]ESCF~X!

]Xj
53

]ESCF~X!

]X1 j

]ESCF~X!

]X2 j

]

]ESCF~X!

]XK j
.
4 .

APPENDIX B: GLOBAL CONVERGENCE RESULTS

In this appendix we give a rigorous proof that Algorithm
5.1 is globally convergent. We strongly rely on the theory
developed in Ref. 22. As in Ref. 22, the optimization prob-
lem to which the trust-region algorithm applies will be quite
general. We will define Algorithms B.1 and B.2. Algorithm
B.1 is, essentially, the trust-region Algorithm 2.1 of Ref. 22
with slight differences that favor its application to our prob-
lem. Algorithm B.2 is a Levenberg-Marquardt19 modification
of Algorithm B.1. In the Levenberg-Marquardt regularization
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approach the trust-region constraint is replaced by a penalty
term added to the objective function of the subproblem. In
this way, trust-region subproblems become easily solvable.
Finally, we will see that Algorithm 5.1 is a particular case of
Algorithm B.2.

1. General assumptions on the problem

Consider the problem

Minimize f ~x! subject to xPR, ~B1!

wheref :Rn→R. Assume thatR is closed,f is differentiable
and

i“ f ~y!2“ f ~x!i2<Liy2xi2

for all x, y belonging to open and convex set that contains
R.

The feasible setR is defined by a finite set of smooth
algebraic equations and inequations. We assume that all the
points of R are regular, which means that the gradients of
the active constraints are linearly independent at every fea-
sible point. Under this condition~see Ref. 34, p. 314! every
local minimizer of Eq. ~B1! satisfies the Karush–Kuhn–
Tucker~KKT ! optimality conditions. Points inR that satisfy
KKT are said to bestationary.

2. Trust-region algorithm

Let i•iA denote an arbitrary norm onRn. Let a
P(0,1/2), M.0, Bk symmetric and

iBki2<M ;kPN.

For all kPN, let $Dk,,%,PN,$tPRut.0% be such that

lim
,→`

Dk,,50.

~Neither the matricesBk nor the sequences of trust-
region radius$Dk,,%,PN need to be computed in advance, but
only at the steps of the algorithm where they are used.!

The algorithm described below is, essentially, Algorithm
2.1 of Ref. 22 with a more liberal choice of the trust-region
radius Dk,, and a stricter resolution of quadratic subprob-
lems.

a. Algorithm B.1

Step 1. Choosex0PR and setk←0.
Step 2. Set,←0.
Step 3. Compute a global solutions̄k(Dk,,) of

Minimize ck~s![ 1
2 sTBks1gk

Ts

subject to xk1sPR,

isiA<Dk,,

J , ~B2!

If ck@ s̄k(Dk,,)#50, terminate the execution of the algorithm.
Step 4. If

f @xk1 s̄k~Dk,,!#< f ~xk!1ack@ s̄k~Dk,,!#, ~B3!

define

sk5 s̄k~Dk,,!,Dk5Dk,, ,acc~k!5,,

computexk11PR such that

f ~xk11!< f ~xk1sk!, ~B4!

setk←k11 and go to step 2.
If Eq. ~B3! does not hold, set,←,11 and go to

step 3. h

Remarks. In Algorithm 2.1 of Ref. 22 the subproblems
~B2! do not need to be solved accurately. Instead, each sub-
problem resolution is preceded by the minimization of a
simple majorizing quadratic of the form Qk(s)
5(1/2)M isi2

21gk
Ts and, after that, a trial point such that

ck@ s̄k(Dk,,)#<Qk@sk
Q(Dk,,)# is taken. Of course, if the trial

increment is a global solution of Eq.~B2!, the requirements
of Algorithm 2.1 of Ref. 22 are also satisfied.

Observe that the condition~B4! has the same meaning
and interpretation as the condition~18! in Algorithm 5.1.

The global convergence theory of a minimization algo-
rithm usually involves two steps. First, one proves that the
algorithm iswell defined. This means that, unless the current
point is stationary~generally, a solution! an iteration neces-
sarily finishes in finite time obtaining a new iterate. The sec-
ond step consists in showing that all the limit points of the
sequence generated by the algorithm are stationary points
and, of course, that such limit points exist. In this way, it can
be guaranteed that stationary points are necessarily found up
to any desired precision. Recall that, in our case, stationary
points coincide with Fock fixed points.

Since Algorithm B.1 is based on Algorithm 2.1 of Ref.
22, the following results are true:

Theorem B.1. If Algorithm B.1 terminates at step 3, then
xk is stationary.
Proof. See Theorem 2.2 of Ref. 22. h

Theorem B.2. If xk is not a stationary point of Eq. (B1),
then Eq. (B3) holds for, large enough, and, so, xk11 is well
defined.
Proof. See Theorem 2.3 of Ref. 22. h

For proving global convergence of Algorithm B.1 we
need an additional assumption. Assumption A says that the
sequences$Dk,,%,PN should not converge to 0 too fast. As a
consequence, a ‘‘very small’’ accepted trust-region radius is
necessarily preceded by a small trust-region radius for which
Eq. ~B3! was not satisfied at the same iteration.

Assumption A. If K,N is an infinite sequence of indices
such that

lim
kPK

xk5x* .

and

lim
kPK

Dk50,

then, either x* is a stationary point of Eq. (B1) or

lim
kPK

Dk,acc(k)2150.

In Algorithm 2.1 of Ref. 22 Assumption A is guaranteed
taking

Dk,0>Dmin.0 ~B5!

and

Dk,,11P@tI Dk,, ,t̄Dk,,# ;,PN ~B6!
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for all kPN, whereDmin.0 and 0,tI , t̄,1.
Theorem B.3. Assume that Assumption A holds. Let$xk%

be a sequence generated by Algorithm B.1 and let x* be an
limit point. Then, x* is stationary.

Proof. All the arguments in the proof of Theorem 3.2 of
Ref. 22 hold replacing the requirements~B5! and ~B6! by
Assumption A. h

3. Levenberg–Marquardt-like algorithm

The Levenberg–Marquardt~LM ! or regularization ap-
proach is often used to enhance convergence properties of
unconstrained~and some constrained! minimization algo-
rithms based on sufficient decrease of the objective function.
The connections of regularization approaches with trust-
region ones are well known. See Ref. 19 and references
therein. Briefly speaking, regularization parameters are the
Lagrange multipliers of trust-region subproblems. In this
section we define LM-like algorithms associated with the
trust-region methods of Sec. B, we prove that they have
similar global convergence properties and we introduce the
LM version of the trust-region method.

Let aP(0,1/2), 0,smin,smax,`, 1,tmin,tmax,`,
andAPRn3n be symmetric and positive definite. Define

B5$BPRn3nuB5BT,iBi2<M %.

a. Algorithm B.2

Step 1. Choosex0PR and setk←0.
Step 2. ChooseBkPB, skP@smin ,smax#. Set,←0, tk,0

50.
Step 3. Define, for allsPRn,

Qk,,~s!5~gk!Ts1 1
2 sT~Bk1tk,,skA!s. ~B7!

Step 4. Computeŝ(tk,,), a global solution of

Minimize Qk,,~s! subject to xk1sPR. ~B8!

If Qk,,@ ŝ(tk,,)#50 terminate the execution of the algo-
rithm.

Step 5.
If

f @xk1 ŝ~ tk,,!#< f ~xk!1aQk,0@ ŝ~ tk,,!#, ~B9!

set acc(k)5,, tk5tk,, , computexk11PR such that

f ~xk11!< f @xk1 ŝ~ tk,,!#, ~B10!

setk←k11 and go to step 2.
If Eq. ~B9! does not hold, then, if,50 taketk,,11.0. If

,.0, taketk,,11P@tmintk,, ,tmaxtk,,#. Set,←,11 and go to
step 3. h

From now on, we define

iziA5AzTAz ;zPRn.

The relation between the LM-like iteration defined by
Algorithm B.2 and a trust-region iteration is given by the
following proposition.

Proposition B.1. Assume that sˆ (tk,,) is a solution of Eq.
(B8) and strust is a solution of

Minimize Qk,0~s!

subject to xk1sPR,

isiA<i ŝ~ tk,,!iA

J . ~B11!

Then, strust is a global solution of Eq. (B8) and sˆ (tk,,) is
a global solution of Eq. (B11).

Proof. For ,50 the proof is trivial. Suppose that,.0.
Sincestrust is a minimizer of Eq.~B11! and ŝ(tk,,) is a fea-
sible point of Eq.~B11!, we have

Qk,0~strust!<Qk,0@ ŝ~ tk,,!#. ~B12!

But, sinceistrustiA<i ŝ(tk,,)iA ,

tk,,

2
strust

T skAstrust<
tk,,

2
ŝ~ tk,,!TskAŝ~ tk,,!. ~B13!

Adding Eqs.~B12! and ~B13!, we get

Qk,,~strust!5Qk,0~strust!1
tk,,

2
strust

T skAstrust

<Qk,0@ ŝ~ tk,,!#1
tk,,

2
ŝ~ tk,,!TskAŝ~ tk,,!

5Qk,,@ ŝ~ tk,,!#.

So,strust is a global solution of Eq.~B8!. For the second part
of the thesis, note that, ifŝ(tk,,) is not a global solution of
Eq. ~B11! we have

Qk,0~strust!,Qk,0@ ŝ~ tk,,!#. ~B14!

So, adding Eqs.~B13! and ~B14!,

Qk,,~strust!,Qk,,@ ŝ~ tk,,!#.

That is, ŝ(tk,,) would not be a global solution of Eq.~B8!.
This completes the proof. h

By Proposition B.1, defining

Dk,,5i ŝ~ tk,,!iA ~B15!

and

ck~s!5Qk,0~s! ;sPRn,

Algorithm B.2 has exactly the same form as Algorithm B.1.
For proving that it has the same global convergence proper-
ties it remains to prove thatDk,, defined by Eq.~B15! is such
that, for fixedk, Dk,, tends tò if , tends to infinity and that
Assumption A holds. This is done in the following two lem-
mas.

Lemma B.1. Assume that, at some iteration k of Algo-
rithm B.2, , tends to infinity andDk,, is defined byEq.
~B15!. Then,

lim
,→`

Dk,,50.

Proof. Sincetmin.1, the fact that, tends to infinity implies
that tk,, tends to infinity too.

SinceQk,,(0)50 and ŝ(tk,,) is a global minimizer of
Qk,,(s) we have that

Qk,,@ ŝ~ tk,,!#<0 ;,.

So,
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~gk!Tŝ~ tk,,!1 1
2ŝ~ tk,,!T~Bk1tk,,skA!ŝ~ tk,,!<0.

Therefore,

tk,,sk

2
ŝ~ tk,,!TAŝ~ tk,,!

<2~gk!Tŝ~ tk,,!2
1

2
ŝ~ tk,,!TBkŝ~ tk,,!

<ig~xk!i2i ŝ~ tk,,!i21
M

2
i ŝ~ tk,,!i2

2 .

SinceR is bounded, the right-hand side of this inequality is
bounded independently of,. But, sincetk,,→` and smin

<sk<smax, we have that

lim
,→`

ŝ~ tk,,!TAŝ~ tk,,!50.

So, lim,→`Dk,,50 as we wanted to prove. h

Lemma B.2. Assume that$xk% is an infinite sequence
generated by Algorithm B.2 and Dk,, is defined by Eq.
~B15!. Then, Assumption A holds
Proof. Let K1 be an infinite subset ofN such that

lim
kPK1

xk5x*

and

lim
kPK1

Dk5 lim
kPK1

Dk,acc(k)50.

We consider two possibilities:
~1! There exists an infinite subsetK2,K1 such thattk

[tk,acc(k) is bounded.
~2! limkPK1

tk5`.
Assume first that$tk%kPK1

is bounded. Then, there exists
K3 , an infinite subsequence ofK2 , such that

lim
kPK3

Bk1sktkA5B1stA5B̄.

Let sPRn be such thatx* 1sPR. Then, for allkPK3

we have that

~gk!Tŝ~ tk!1 1
2ŝ~ tk!

T~Bk1tkskA!ŝ~ tk!

<~gk!T~x* 1s2xk!

1 1
2 ~x* 1s2xk!T~Bk1tkskA!~x* 1s2xk!.

So, taking limits forkPK3 and using that

lim
kPK3

i ŝ~ tk!iA5 lim
kPK3

Dk50,

we obtain

g~x* !Ts1 1
2 sTB̄s>0

for all sPRn such thatx* 1sPR. Therefore, 0PRn is a
minimizer of g(x* )Ts1 1

2s
TB̄s subject tox* 1sPR. Since

x* is regular, the KKT conditions for this problem hold and,
since these KKT conditions are the same as the KKT condi-
tions of Eq.~B1!, x* is stationary.

Now, assume that limkPK1
tk5`. Since tk

<tmaxtk,acc(k)21 we have that

lim
kPK1

tk,acc(k)215`.

Since Qk,tk,acc(k)21
(0)50 and ŝ@ tk,acc(k)21# is a global

minimizer of Qk,tk,acc(k)21
(s) we have

Qk,acc(k)21@ ŝ~ tk,acc(k)21!#<0 ;kPK1 .

So

~gk!Tŝ~ tk,acc(k)21!1 1
2ŝ~ tk,acc(k)21!T

3~Bk1tk,acc(k)21skA!ŝ~ tk,acc(k)21!<0 ;kPK1 .

Therefore, for allkPK1 ,

tk,acc(k)21sk

2
ŝ~ tk,acc(k)21!TAŝ~ tk,acc(k)21!

<2~gk!Tŝ~ tk,acc(k)21!2 1
2 ŝ~ tk,acc(k)21!TBkŝ~ tk,acc(k)21!

<ig~xk!i2i ŝ~ tk,acc(k)21!i21
M

2
i ŝ~ tk,acc(k)21!i2

2 .

SinceR is bounded, the right-hand side of this inequality is
bounded too. But, sincetk,acc(k)21→` andsmin<sk<smax,
we have that

lim
kPK1

ŝ~ tk,acc(k)21!TAŝ~ tk,acc(k)21!50.

So, limkPK1
Dk,acc(k)2150 as we wanted to prove. h

We proved that Algorithm B.2 is a particular case of
Algorithm B.1 and that Assumption A is satisfied. Therefore,
by Theorem B.2, the following global convergence theorem
also holds.

b. Theorem B.3

~1! If Algorithm B.2 terminates at step 4, then xk is a
stationary point of Eq. (B1).

~2! If xk is not a stationary point of Eq. (B1), then Eq.
(B9) holds for, large enough, and, so, xk11 is well defined.

~3! Let $xk% be a sequence generated by Algorithm B.2.
Then, $xk% admits at least one limit point and every limit
point is stationary.

So far, we defined a globally convergent method for
solving nonlinear programming problems@Eq. ~B1!# such
that all the iterates are feasible points (xkPR) and f (xk11)
, f (xk) for all k. Algorithm B.2 tends to be more easily
implementable than Algorithm 2.1 of Ref. 22 because in the
latter the feasible set of the subproblems is the intersection of
R with a trust-region ball whereas in Algorithm B.2 the fea-
sible region of the subproblems isR. However, in many
general nonlinear programming problems, even subproblem
~B8! can be very difficult~perhaps, as difficult as the original
problem!. In our case, with the appropriate definition ofBk ,
subproblems ~B8! are easy and, so, the Levenberg–
Marquardt~LM !-like algorithm becomes attractive.

Algorithm V.1 shares the same theoretical properties of
Algorithm B.2, as stated in the following theorem.
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c. Theorem B.4

~1! If Algorithm 5.1 terminates at step 4, then xk is a
stationary point of Eq. (1).

~2! If xk is not a stationary point of Eq. (1) and
type(k)52, then Eq. (17) holds for t large enough, and, so,
xk11 is well defined.

~3! Let $xk% be a sequence generated by Algorithm 5.1.
Then, $xk% admits at least one limit point and every limit
point is stationary.
Proof. Algorithm 5.1 is a particular case of Algorithm B.2.
Then, the thesis follows from Theorem B.3. h

APPENDIX C: RESOLUTION OF THE EASY
SUBPROBLEMS

In this appendix we explain why the subproblems de-
scribed in Sec. IV are computationally simple. We analyze
the solution of Eq.~16! with type(k)52. Let r511t.
Then, the ‘‘easy’’ subproblem~16! is equivalent to

Minimize
2

skr
~gk!T~x2xk!1~x2xk!TA~x2xk!

subject to xPR.

We perform the following change of variables inRn:

y5A1/2x.

Consequently,

x5A21/2y, yk5A1/2xk, xk5A21/2yk .

Moreover, writing

Yi5S1/2Xi ; i 51,...,N,

we also have

Yi
k5S1/2Xi

k ; i 51,...,N.

Let us write

y5S Y1

•

•

•

YN

D PRKN, yk5S Y1
k

•

•

•

YN
k

D PRKN,

Y5~Y1 ,...,YN!PRK3N, Yk5~Y1
k ,...,YN

k !PRK3N.

So, the easy subproblem becomes

Minimize
2

skr
~gk!TA21/2~y2yk!1iy2yki2

2

subject toYTY5I N.

Calling

ḡk5
1

skr
A21/2gk,

the easy subproblem is equivalent to

Minimize 2ḡk
T~y2yk!1iy2yki2

2 subject to YTY5I N .

This is equivalent to

Minimize iy2~yk2ḡk!i2
2 subject to YTY5I N .

Let us write

zk5yk2ḡk5S Z1
k

•

•

•

ZN
k

D PRKN

and

Z̄5~Z1
k ,...,ZN

k !PRK3N.

Then the easy subproblem is

Minimize iY2Z̄iF
2 subject to YTY5I N , ~B16!

wherei•iF denotes the Frobenius norm.
Assume that

Z̄5USVT

is the SVD decomposition ofZ̄. Therefore,UPRK3K and
VPRN3N are unitary andSPRK3N is diagonal. Since
iQ1AiF5iAQ2iF5iAiF , wheneverQ1 andQ2 are unitary,
the easy problem is equivalent to

Minimize iUTYV2SiF
2 subject to YTY5I N .

Write W5UTYV. The statementsYTY5I N and WTW
5I N are clearly equivalent, therefore the solution of the
problem above isY5UWVT, whereW solves

Minimize iW2SiF
2 subject to WTW5I N .

A solution of this problem is the diagonal matrixW
PRK3N that has 1’s on its diagonal. We will callI K3N this
matrix for now on. So, the solutionY of Eq. ~B16! is

Y5UI K3NVT.

Therefore, writing U5(U1 ,...,UK), V5(V1 ,...,VN) we
have

Y5U1V1
T1¯1UNVN

T .

Finally, the solution of the easy subproblem is

X5S21/2Y.
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